シュレーディンガー描像のソースを表示
←
シュレーディンガー描像
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
量子論において'''シュレーディンガー描像'''(シュレーディンガーびょうぞう、{{lang-en-short|Schrödinger picture}})または'''シュレーディンガー表示'''(シュレーディンガーひょうじ、{{lang-en-short|Schrödinger representation}})とは、系の[[時間発展]]について「[[オブザーバブル]]は時間変化せずに、[[量子状態|状態]]が時間発展する」と考える方法である。 これは「状態は時間変化せず、オブザーバブルが時間発展する」と考える[[ハイゼンベルク描像]]や、「状態もオブザーバブルも時間発展する」と考える[[相互作用描像]]とは異なる考え方・定式化であるが、どの描像を用いても得られるオブザーバブルの期待値や測定値の確率分布は同じなので等価な理論である。 ==シュレーディンガー方程式== 時間発展はシュレーディンガー描像であるとした時、演算子形式では一般に、「状態<math>|\psi\rangle</math>は以下の[[シュレーディンガー方程式]]に従うように時間発展する」ということを基本原理とする。 :<math>i\hbar\frac{\partial{}}{\partial{}t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle</math> ここで、<math>\hat{H}</math>は系の全力学的エネルギーを表す「[[ハミルトニアン]](ハミルトン演算子)」という[[エルミート演算子]]であり、対応する古典系のハミルトニアンを[[正準量子化]]する事によって得られることが多い。 ==時間発展演算子== ===定義=== 時間発展演算子<math>\hat{U}(t,t_0) \ </math>は、次のように定義される。 {{Indent|<math> | \psi(t) \rangle = \hat{U}(t,t_0) | \psi(t_0) \rangle </math>}} これは、状態の時間発展についての情報を全て担っている演算子である。 この演算子を<math>t_0 \ </math>における[[状態ベクトル]]に作用すると、<math>t \ </math>における[[状態ベクトル]]が得られる。 [[ブラ-ケット記法|ブラ]]については、次のようになる。 {{Indent|<math> \langle \psi(t) | = \langle \psi(t_0) |\hat{U}^{\dagger}(t,t_0) </math>}} ===特徴=== ====特徴その1==== シュレーディンガー方程式より、状態ベクトルの[[ノルム]]が時間によって変化しないことがわかる。 よって時間発展演算子は[[ユニタリ演算子|ユニタリ]]でなければならない。つまり、 {{Indent|<math> \langle \psi(t)| \psi(t) \rangle = \langle \psi(t_0)|\hat{U}^{\dagger}(t,t_0)\hat{U}(t,t_0)| \psi(t_0) \rangle = \langle \psi(t_0) | \psi(t_0) \rangle </math>}} よって :<math> \hat{U}^{\dagger}(t,t_0)\hat{U}(t,t_0)=\hat{I} </math> ====特徴その2==== 明らかに、<math>\hat{U}(t_0,t_0) \ </math>は[[恒等写像|恒等作用素]]である。 :<math> | \psi(t_0) \rangle = \hat{U}(t_0,t_0) | \psi(t_0) \rangle </math> よって :<math> \hat{U}(t_0,t_0)=\hat{I} </math> ====特徴その3==== 時刻<math>t_0 \ </math>から<math>t \ </math>への時間発展は、<math>t_0 \ </math>から中間の時間<math>t_1 \ </math>への時間発展と<math>t_1 \ </math>から<math>t \ </math>への時間発展をあわせたものと見ることも出来る。よって、次の式を得る。 :<math>\hat{U}(t,t_0) = \hat{U}(t,t_1)\hat{U}(t_1,t_0)</math> ==時間発展演算子の満たすべき条件・具体的な形== 時間発展演算子はどんな形でも良いわけではない。時間発展についての基本原理(シューレディンガー方程式)に合うような形でなければならない。 慣習的に、<math>t_0 \ </math>を、<math>t_0=0 \ </math>として省略し、<math>\hat{U}(t,t_0)\ </math>を<math>\hat{U}(t)\ </math>と書く。[[シュレーディンガー方程式]]に代入すると、 :<math> i \hbar {d \over dt} \hat{U}(t) | \psi (0) \rangle = \hat{H} \hat{U}(t)| \psi (0)\rangle </math> ここで<math>\hat{H} \ </math>は系の[[ハミルトニアン#量子力学|ハミルトニアン]]、<math> | \psi(0) \rangle </math> は<math>t=0</math>における状態ケットである。つまり、次の時間発展演算子の満たすべき条件が得られる。 :<math> i \hbar {d \over dt} \hat{U}(t) = \hat{H} \hat{U}(t) </math> この式をそれぞれの条件のもとで解けば、時間発展演算子の具体的な形が求まる。 ===ハミルトニアンが時間に依らない場合=== ハミルトニアンが時間に依らないならば、上の式の解は次のようになる。 {{Indent|<math> \hat{U}(t) = e^{-i\hat{H}t / \hbar} </math>}} ここで、<math>t=0 \ </math>において<math>\hat{U}(t) \ </math>は恒等演算子と一致しなければならない、という条件を用いた。よって、次を得る。 :<math>| \psi(t) \rangle = e^{-i\hat{H}t / \hbar} | \psi(0) \rangle </math> <math> | \psi(0) \rangle </math>は任意のケットであることに注意。 ここで初期状態<math> | \psi(0) \rangle </math>としてハミルトニアンの固有値の1つ<math>E \ </math>の固有状態を選ぶと :<math>| \psi(t) \rangle = e^{-iEt / \hbar} | \psi(0) \rangle </math> よって、ハミルトニアンの固有状態は時間によって位相係数しか変化しない、つまり定常状態であることがわかる。 ===ハミルトニアンが時間に依存するが、異なる時間でのハミルトニアン同士が交換する場合=== もし、ハミルトニアンが時間に依るが、異なる時間でのハミルトニアン同士が交換するのであれば、時間発展演算子は次のように書ける。 :<math> \hat{U}(t) = \exp \left( - \frac{i}{\hbar} \int_0^t dt^' \, \hat{H}(t^') \right)</math> シュレーディンガー描像とは別に、座標系を座標系そのものが伝播関数により回転するようにとることもできる。この場合、波動の回転は座標系の回転と一致するので、定常状態の関数は真に定常となる。これが[[ハイゼンベルク描像]]である。 ==関連項目== *[[時間発展]] *[[ハミルトン-ヤコビ方程式]] *[[ハイゼンベルク描像]] *[[相互作用描像]] ==関連書籍== * ''Principles of Quantum Mechanics'' by R. Shankar, Plenum Press. {{量子力学}} {{Physics-stub}} {{DEFAULTSORT:しゆれえていんかあひようそう}} [[Category:量子力学]] [[Category:物理学のエポニム]]
このページで使用されているテンプレート:
テンプレート:Indent
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Physics-stub
(
ソースを閲覧
)
テンプレート:量子力学
(
ソースを閲覧
)
シュレーディンガー描像
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報