スツルムの定理のソースを表示
←
スツルムの定理
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''スツルムの定理'''(スツルムのていり、{{lang-en-short|Sturm's theorem}})とは、実係数一変数[[多項式]]の任意に指定された実区間に含まれる(重複を含めない)実零点の個数を決定する方法である(扱える区間としては無限区間、半無限区間も含む)。 [[代数学の基本定理]]によれば(一般には複素係数の)一変数[[多項式]]の重複を込めた複素零点の個数はその多項式の次数に等しいが、スツルムの定理では実係数多項式の実零点の個数を重複を考慮せずに扱っている。 == スツルム列 == 実区間<math>[a,b]</math>が与えられたとき、次の4つの条件を満足する実係数をもつ[[多項式]]列 :<math> f_0(x),~f_1(x),~f_2(x),~\cdots,~f_L(x)</math> は区間<math>[a,b]</math>において'''スツルム列'''(スツルム関数列)をなすという。 # 列中にある任意の隣り合う2つの多項式<math>f_k(x)</math>と<math>f_{k+1}(x)</math>は、区間<math>x \in [a,b]</math>に於いて共通の零点を持たない。 # 列中にある任意の隣り合う3つの多項式<math>f_{k-1}(x)</math>、<math>f_k(x)</math>、<math>f_{k+1}(x)</math>について、区間<math>[a,b]</math>に於ける多項式<math>f_k(x)</math>の零点<math>z</math>に対して、その両側の多項式の<math>z</math>に於ける値の符号は逆になる(つまり<math>z\in[a,b]</math>かつ<math>f_k(z)=0</math>ならば<math>f_{k-1}(z) f_{k+1}(z)<0</math>である)。 # 列の最後の多項式<math>f_L(x)</math>は 区間<math>x \in [a,b]</math>に於いて一定の符号を持つ(つまり<math>f_L(x)</math>は区間<math>x \in [a,b]</math>に零点を持たない)。 # <math>f_0(x)</math>の区間<math>x \in [a,b]</math>に於ける任意の零点を<math>z</math>とすれば、<math>f_0'(z) f_1(z) > 0</math>である。ここで<math>f_0'(x)</math>は<math>f_0(x)</math>の導関数を表す。 === ユークリッドの互除法によるスツルム列の生成 === 上の条件を満足するスツルム列の一つとして、[[多項式]]<math>f(x)</math>とその[[微分]]<math>f'(x)</math>について :<math>f_0(x)=f(x)</math> :<math>f_1(x)=f'(x)</math> とおき、これに[[ユークリッドの互除法]]を適用することで得られる多項式列がある: :<math>\begin{matrix} f_0(x) & = & g_1(x)f_1(x)-f_2(x)\\ f_1(x) & = & g_2(x)f_2(x)-f_3(x)\\ f_2(x) & = & g_3(x)f_3(x)-f_4(x)\\ & \vdots & \\ f_{l-1}(x) & = & g_l(x)f_l(x)~~~~~~~~~~\\ \end{matrix}</math> このとき<math>f_l(x)</math>は<math>f_0(x)</math>と<math>f_1(x)</math>との[[最大公約数]]であり、さらに<math>f(x)=0</math>と<math>f'(x)=0</math>が共通根をもたない、すなわち<math>f(x)=0</math>が単根のみをもつとき、<math>f_l(x)=</math>定数<math>\ne0</math>を満足する。 また、3重対角化された[[対称行列]]<math>A</math>からなる[[行列]]<math>\lambda I-A</math>の[[主小行列式]]により構成される多項式列や、最高次の係数が正である[[直交多項式]]の列も区間<math>[a,b]</math>においてスツルム列をなす。 == スツルムの定理 == 実係数多項式の列<math>f_0(x),f_1(x),f_2(x),\cdots,f_l(x)</math>は<math>x \in [a,b]</math>でスツルム列をなし、<math>f_0(a)f_0(b)\neq0</math>であるとする。 このとき、<math>x</math>を固定して関数値の列 :<math> f_0(x),~f_1(x),~f_2(x),~\cdots,~f_l(x)</math> を左から右に見ていったときの符号(正負)の変化の回数を<math>N(x)</math>とすると、方程式<math>f_0(x)=0</math>の区間<math>[a,b]</math>内における解の個数は :<math> N(a)-N(b)</math> で与えられる。 == スツルムの方法 == スツルムの定理を用いることで、区間<math>[a,b]</math>内に存在する<math>f(x)=0</math>の実根の個数を求めることができるが、これを利用して区間縮小法により実係数をもつ[[代数方程式]]の実数解を求めることができる。 たとえば区間<math>[a,b]</math>を2等分して<math>[a,(a+b)/2],[(a+b)/2,b]</math>なる二つの区間に分け、各区間における根の個数をスツルムの定理によって求める、という手順を繰り返してしだいに区間を狭くしていく。そして、一つの根だけが存在する区間を十分に小さくすることで、根の[[近似値]]を得ることができる。([[二分法]]) また、区間<math>[a,b]</math>において<math>a</math>を固定して<math>b</math>を<math>N(a)-N(b)=1</math>になるまで小さくし、それから[[二分法]]を用いて<math>b-a\le\varepsilon</math>になるように<math>a,b</math>の値を近づけることで根の最小値を決定し、そして次に小さい根を決定する、といったように根の近似値を小さい根の方から、あるいは大きい方から得ることもできる。 このように[[二分法]]や[[ニュートン法]]などの[[求根アルゴリズム]]を用いてスツルムの定理から根の近似値を求める手法を'''スツルムの方法'''という。 実[[対称行列]]あるいは[[エルミート行列]]の[[固有値問題]]においても、指定された実区間にある固有値の個数(重複度を含めた)を求めることにより区間縮小法により固有値の存在範囲の狭めて近似値を求めるスツルムの二分法として応用される。 == 参考文献 == {{参照方法|date=2025年2月8日 (土) 16:11 (UTC)}} * 高木貞治、「代数学講義(改訂新版)」第3章''スツルムの問題,根の計算'', 共立出版、1965年(初版は1930年、改訂版は1948年) * {{Cite book|和書|author=森正武|authorlink=森正武|year=2002|month=2|title=数値解析|publisher=共立出版|isbn=4-320-01701-3|}} * {{Cite book|和書|author=夏目雄平・小川建吾|year=2002|month=3|title=計算物理I|publisher=朝倉書店|isbn=978-4-254-13713-2|}} == 関連項目 == * [[代数方程式]] * [[固有値問題]] * [[二分法]] {{DEFAULTSORT:すつるむのていり}} [[Category:応用力学]] [[Category:数値解析]] [[Category:解析学の定理]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:参照方法
(
ソースを閲覧
)
スツルムの定理
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報