ゼンハーモニック音楽のソースを表示
←
ゼンハーモニック音楽
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[ファイル:Xenharmonic_versus_microtonal_P4.png|サムネイル|「ゼンハーモニック」は12平均律の半音より大きな音程(>100¢)を含み、[[微分音]](Microtonal)は12平均律の半音より小さな音程(<100¢)のみを表す。 {{Audio|Xenharmonic versus microtonal P4.mid|Play}}]] '''ゼンハーモニック音楽'''({{lang-en-short|Xenharmonic music}})とは、[[12平均律]]とは異なる調律システムを使用する音楽の総称である。[[ギリシア語]]で「外国」「異種」の意を持つXeno(ギリシア語: '''ξένος''')を語源とし、{{仮リンク|アイヴァー・ダレッグ|en|Ivor Darreg}}によって命名された。彼は「[[純正音程]]や5、7、11平均律などの[[音律]]、さらにはそれ以上の音数を持つ実に[[微分音]]的なシステムを可能な限り含めることを意図している」と述べた<ref>{{Cite web |author=Darreg |first=Ivor |date=May 1974 |title=Xenharmonic Bulletin No. 2 |url=http://sonic-arts.org/darreg/XHB2.HTM |url-status=unfit |archive-url=https://web.archive.org/web/20120205142523/http://sonic-arts.org/darreg/XHB2.HTM |archive-date=February 5, 2012 |access-date=January 13, 2007}}</ref>。このため、通常ゼンハーモニックは微分音(マイクロトーン)よりも広義の概念として扱われる。 ジョン・チャルマーズは著書である『''Divisions of Tetrachord''』において、「この定義は逆説的に、12平均律で演奏してもその同一性が大きく損なわれない音楽は、真の意味で微分音楽的ではない ({{En|not ''microtonal''}}) ということを意味する」と自著に書いている<ref>Chalmers, John H. (1993). ''Divisions of the tetrachord: a prolegomenon to the construction of musical scales'', p.1. Frog Peak Music. {{ISBN2|9780945996040}}.</ref>。このようにゼンハーモニック音楽は音程や平均律の使用形態と同様に、見なれない[[音程]]、[[和音]]、[[音色]]の使用によって12音音楽と区別されることがある。 チャルマーズ以外の理論家はゼンハーモニックとそれ以外の分類は主観的なものであると考えていた。エドワード・フートは『''6 degrees of tonality''』の曲目解説の中で、[[キルンベルガー第3法|キルンベルガー]]やデモーガンなどの音楽家が使用する調律に対する反応の違いについて、「衝撃的なもの」から「すぐに気づかないほど微妙なもの」まであるとし、「20世紀の耳にとって、調律は新しい領域である。初めて聴く人は転調の際にハーモニーの『色』が変わるのを聴いて衝撃を受けるかもしれないし、微妙すぎてすぐには気づかないかもしれない」と記している<ref>{{Cite web |author=Foote |first=Edward |title=Six Degrees Of Tonality The Well Tempered Piano - CD notes |url=http://www.piano-tuners.org/edfoote/well_tempered_piano.html |website=UK piano page |date=2001 |access-date=2024-4-14}}</ref>。 == 全音階との関連性 == 12音階の一般的な規律を守りながらゼンハーモニック的な特徴を有している音楽も少なからず存在する。たとえば、『''The Structure of Recognizable Diatonic Tunings''』(1985年)の著者である{{仮リンク|イースリー・ブラックウッド|en|Easley Blackwood}}は12音から24音までの多くの平均律でエチュード([[練習曲]])を書いている。これらのエチュードは12音音楽とのつながりや類似点、またさまざまなゼンハーモニック的特徴を内包し、『{{仮リンク|電子音楽メディアのための12の微分音エチュード|en|Twelve Microtonal Etudes for Electronic Music Media}}』に収録されている。 彼は自身の制作した16音エチュードについてこう述べている:<ref name="blackwoodprogramnotes">{{Cite web |author=Blackwood |first=Easley |title=Blackwood: Microtonal Compositions |url=https://www.dramonline.org/albums/blackwood-microtonal-compositions/notes |access-date=2024-4-14}}</ref> {{Quote|この調律は4つの[[減七和音]](dim7)が絡み合った組み合わせとして考えるのが最善だ。12音階は3つの減七和音の組み合わせと考えることができるので、この2つの調律に共通する要素があることは明らかである。この2つの調律における和声において最も明白な違いは、16音階の三和音は認識こそできるものの、[[カデンツ]]において終止に使われる和音として機能するにはあまりにも不協和音であるということだ。しかし、変化したサブドミナントとドミナントの和声の連続によって調を確立することは可能であり、このエチュードは主にこの性質に基づいている。採用されている基本的な子音和声は、短三和音に短七度を加えたものである。}} またダレッグは、「私は12平均律のように聞こえないものすべてを指すために”Xenharmonic"という言葉を考案した」とも述べた。 == 調律や楽器、作曲家 == 先述の通り、12平均律以外の音階や調律を使った音楽はその全てがゼンハーモニックに分類される。これには他の平均律のほか、[[純正律]]に基づいた音階も含まれる。物理的な物体(棒や柱、プレート、円盤、球体、岩など)の引き起こす音の[[倍音列]] や[[インハーモニシティ]]に由来する調律などは時として、ゼンハーモニックの探求の基礎となる。{{仮リンク|ウィリアム・コルヴィグ|en|William Colvig}}は[[ルー・ハリソン]]と合同で、''チューブロング''と呼ばれる独自のチューニングに基づいた楽器を開発した<ref>Haluška, Ján (2003). ''The Mathematical Theory of Tone Systems'', [https://books.google.com/books?id=w7yZ1Nzb5awC&q=tubulong p.284]. Marcel Dekker. {{ISBN2|9788088683285}}.</ref>。 でたらめに選択された音集合によるゼンハーモニック音階での[[電子音楽]]の作曲が最初に探求されたのはアルバム『''Radionics Radio: An Album of Musical Radionic Thought Frequencies''』である: イギリスの作曲家{{仮リンク|ダニエル・ウィルソン|en|Daniel Wilson}}が、1940年代後半にオックスフォードの{{仮リンク|デ・ラ・ワー研究所|en|De La Warr Laboratories}}で使用されていた[[ラジオニクス]]に基づく[[ウェブアプリケーション]] のユーザーから投稿された周波数を用いて作曲を行なった。<ref>{{Cite web |author=Walker |first=Elaine |date=2017-08-03 |title=What is Xenharmonic Music? |url=https://newmusicusa.org/nmbx/what-is-xenharmonic-music/ |access-date=2022-08-11 |website=New Music USA |language=en-US}}</ref>{{仮リンク|エレイン・ウォーカー|en|Elaine Walker (composer)}}は新型の鍵盤を開発し、その鍵盤でゼンハーモニック音楽を作曲する電子音楽家である。このほか、ゼンハーモニックに特化した楽器として''カイトギター''と呼ばれる特殊な41平均律[[ギター]]のブランドが存在する<ref>{{Cite web |title=The Kite Guitar – the future of tuning |url=https://kiteguitar.com/ |access-date=2024-04-15 |language=en-US}}</ref>。 また、{{仮リンク|The Apples in Stereo|en|The Apples in Stereo}}の{{仮リンク|ロバート・シュナイダー|en|Robert Schneider}}は"非[[ピタゴラス音律]]”と呼称される[[対数関数]]によって作成された音律を作成し使用した。{{仮リンク|アニー・ゴスフィールド|en|Anny Gosfield}}の”わざと調律を外した”音楽や、体系的ではない音律を使用する[[エロディ・ローテン]]、[[ウェンディ・カルロス]]、アイヴァー・ダレッグ、{{仮リンク|パウル・エリッチ|en|Paul Erlich}}らの音楽も場合によってはゼンハーモニックに分類される。{{要出典|date=December 2017}} [[坂本龍一]]の「[[ライオット・イン・ラゴス]]」においても[[31平均律]]が使用されており、これも当該音律のゼンハーモニックな特徴を前面に押し出した楽曲となっている<ref>{{Cite web |author= 左近治 |date=2019-07-07 | title=「riot in Lagos」(坂本龍一)にみる微分音活用例 | url=https://tawauwagotsakonosamu.blog.ss-blog.jp/2019-07-07 |language=ja-JP |access-date=2024-04-14}}</ref>。 === MOSスケール === [[File:MOS scales on 31EDO.webp|thumb|31平均律で成立するMOSスケールの代表例。(左上)3L 4s mosh (右上) 5L 3s oneirotonic (左下) 5L 1s machinoid (右下) 4L 5s gramitonic]] '''MOS(Moment of Symmetry)スケール'''は1975年に{{仮リンク|アーヴ・ウィルソン|en|Erv Wilson}}によって提案された音階を体系的に作成するシステムであり、主に12以外の任意の平均律の上で[[調性]]を成り立たせるために利用される。<ref name=":1">{{Cite web |author=Kraig Grady |date=2007-06-17 |title=Introduction to Erv Wilson's Moments of Symmetry |url=https://anaphoria.com/wilsonintroMOS.html |language=en-US |access-date=2024-04-14}}</ref>より具体的には、特定の平均律の中で[[オクターブ]]を無視して特定の音程("ジェネレーター"と呼称される)を堆積することで[[五度圏]]に類似する系列を作成し、その一部を切り取った上で[[ソート]]し単独の音階とみなすことで生まれる。 生成された音階は内包される全音と半音の数と比率、すなわち"L", "s"及び"L/s"という3つの数値を使って表される。(12平均律における例: [[全音階]]は5L 2s (L/s=2:1)、[[ヨナ抜き音階]]は2L 3s (L/s=3:2)。)なお、全音と半音のみで成り立たない音階や、五度圏の亜種のサブセットとして表せない音階はMOSには含まれない<ref name=":1" />。L, sの数値を変更した場合は異なるMOSスケールとして扱われるが、L/sが異なる場合はあくまで「同じ音階の異なる[[チューニング]]」ともみなすことができるため、この性質を利用して全音階やヨナ抜き音階の概念を複数の音律に拡張することもできる<ref name=":0">{{Cite web |url=https://note.com/harai_tama/n/ne7ca88d5275a |title=31平均律を日本一わかりやすく解説 |access-date=2024-04-15 |author=中井三十一/原井玉葱郎 |date=2023-07-06}}</ref>。 MOSスケールはその定義の単純さと有用さ、そしてその多様性(n音のMOSスケールはn-1種類存在する)からゼンハーモニック音楽に極めて多用される傾向にある。また、ごく一部のMOSスケールは伝統的な音階との深い類似性を有することで知られている(例を挙げるなら[[ガムラン]]の[[ペロッグ]]音階は2L 5s antidiatonicとして、[[スレンドロ]]音階はL/s比の極端に高い5L 1s machinoidとしてそれぞれ厳密に表すことができるほか、4L 3s smitonicは[[トルコ]]の民族音楽における長調を近似する<ref>{{Cite web |title=中部ジャワの青銅楽器の合奏・ガムランの音高と音程構造~筑紫女学園大学所蔵のガムラン・グテを例として~ |url=https://chikushi-u.repo.nii.ac.jp/records/1082 |website=chikushi-u.repo.nii.ac.jp |access-date=2024-08-06 |language=ja |author=田村史子 |date=2022-02-01}}</ref><ref>{{Cite web |title=Mohajira - Xenharmonic Wiki |url=https://en.xen.wiki/w/Mohajira |website=en.xen.wiki |access-date=2024-08-06}}</ref>)。これらのMOSスケールはXenharmonic Wiki<ref>[http://xen.wiki Xenharmonic Wiki]</ref>のサブプロジェクトとして存在する"TAMNAMS"によって命名され、実用化を目的とする性質の調査が積極的に行われている。 === 純正音程との関連性 === [[ファイル:Harmonic entropy Farey sequence.png|サムネイル|初期の最も短略的な定義(ファレイ数列。左記)により算出されたハーモニック・エントロピー。]] [[ファイル:Dyadic harmonic entropy graph (optimized for low resolution).png|サムネイル|低解像度向けに簡略化されたハーモニック・エントロピー。]] [[ファイル:Low harmonic entropy linear temperaments.png|サムネイル|任意のジェネレーターによるMOSスケール及びレギュラーテンペラメントにおける、各音程のハーモニック・エントロピーの平均値。]] ゼンハーモニックの文脈においても、純正音程は極めて重要な概念である。特定の純正音程を堆積した結果を別の純正音程と無理矢理でもみなすことで調律を行う{{仮リンク|レギュラーテンペラメント|en|Regular temperament}}という概念が存在する。{{仮リンク|パウル・エリッチ|en|Paul Erlich}}は任意の音程がどれほど協和するかを判定する目的で、ハーモニック・エントロピーと呼称される指標を考案した<ref>{{Cite web |title=DyadにおけるHarmonic Entropy |url=https://zenn.dev/music_shio/articles/79f86f0c9c8e34 |website=Zenn |access-date=2024-04-20 |language=ja}}</ref>。これは音程を純正比で近似した場合の複雑さ、即ち[[情報量]]を数値化したものであり、この単位を利用することで、MOSスケールを始めとする各音律が最も協和するチューニングを数理的に探し当てることができる。 以下に[[ファレイ数列]]を利用した最も単純なハーモニック・エントロピーの定義を示す。ただし<math display="inline">N</math>と<math>s</math>は固有の定数、<math display="inline">H(x)</math>は[[ヘヴィサイドの階段関数]]とする。 <math>he(x) = \sum_{a=1}^N \sum_{b=1}^N \frac{e^{-s(\log_2(x)-\log_2(\frac{a}{b}))^2}H(1-\gcd(a,b))}{\max(a,b)}</math> しかしながら、{{仮リンク|高さ関数|en|Height function}}の種類や許容する誤差の大小、集計にどの[[ヘルダー平均]]を利用するかなどの差異からハーモニック・エントロピーには複数の定義が存在する。それらの定義の中どれが最も人間の感覚に近いのかは未だ結論づけられていない。そのため、現時点ではその簡略性から、概ね全てのケースで{{仮リンク|ウィリアム・サタレス|en|William Sethares}}による[[シャノンエントロピー]]に基づいた定義<ref>{{Cite web |url=http://sethares.engr.wisc.edu/paperspdf/HarmonicEntropy.pdf |title=Harmonic Entropy |access-date=2024-04-26 |author=William Sethares}}</ref>が使用される。 一方、2024年2月、米[[プリンストン大学]]及び英[[ケンブリッジ大学]]の研究者らにより、「純正音程への正確な近似が人間の主観における音程の協和に必ずしも必須ではなく、むしろ多少の濁りを有する和音の方が快適である」という学説が[[ネイチャー|ネイチャー誌]]に掲載された。この研究結果は志願した約4000人の被験者に様々な和音を聴かせ、数値での快適さの評価を求め、そしてその和音をより心地よくするために周波数を画面上のスライダーで動かしてもらうという一連の実験の結果得られたものである<ref>{{Cite journal|last=Marjieh|first=Raja|last2=Harrison|first2=Peter M. C.|last3=Lee|first3=Harin|last4=Deligiannaki|first4=Fotini|last5=Jacoby|first5=Nori|date=2024-02-19|title=Timbral effects on consonance disentangle psychoacoustic mechanisms and suggest perceptual origins for musical scales|url=https://www.nature.com/articles/s41467-024-45812-z|journal=Nature Communications|volume=15|issue=1|pages=1482|language=en|doi=10.1038/s41467-024-45812-z|issn=2041-1723}}</ref><ref>{{Cite web |title=ピタゴラス提唱の“不協和音”の理論、間違いだった? 人は少しズレた不調和を好む 英研究者らが発表 |url=https://www.itmedia.co.jp/news/articles/2403/07/news063.html |website=ITmedia NEWS |access-date=2024-04-15 |language=ja}}</ref>。 また前後して2022年2月には、「線形スケールの周波数同士の[[階差数列|階差]]の比が純正音程に近ければ、例え周波数の比自体が純正音程でなくとも和音は比較的協和する」という旨を主張する記事が匿名の著者によりXenharmonic Wikiに掲載された<ref>{{Cite web |title=Delta-rational chord - Xenharmonic Wiki |url=https://en.xen.wiki/w/Delta-rational_chord |website=en.xen.wiki |access-date=2024-07-26}}</ref>。当該記事ではこのような和音を総括してDR(Delta-rational)コードと呼称し、MOSスケールとの親和性の高さ、純正和音との対称性などが主張されている。 == ソフトウェア == 実際にゼンハーモニック音楽を作曲する際に使用可能な、[[デジタル・オーディオ・ワークステーション|DAW]]や[[Virtual Studio Technology|VST]]プラグインなどの楽曲制作ソフトウェアは極めて限られる。このうち代表的な実例は以下の通りである<ref>{{Cite web |title=Microtonal Software |url=http://www.microtonal-synthesis.com/software.html |website=www.microtonal-synthesis.com |access-date=2024-07-08}}</ref><ref>{{Cite web |title=Software |url=https://www.huygens-fokker.org/microtonality/software_en.html |website=www.huygens-fokker.org |access-date=2024-07-08}}</ref>。 * [[Ableton Live]] * BABYLON * [[Csound|CSound]] * Entonal Studio * EP-MK1 * [[FluidSynth]] * [[FL Studio]]<ref>内蔵インストゥルメントのStyrus, Harmorのみが対応。</ref> * FM8 * forbidden-music * [[Kontakt|KONTAKT 6]] * Microsynth * Microtonal Poly Worms * MICROTONE 5000 * {{仮リンク|Mus2|en|Mus2}} * [[OpenMusic]] * Online 19-edo keyboard * [[Pure Data]] * [[Scala (音楽ソフトウェア)]] * Scale Workshop * Surge * Terpstra Keyboard * [[TiMidity++]] * Vital * Wilsonic * Xenpaper また、以下のソフトウェアはそもそも作曲への利用自体想定されていないものの、その万能性から極めて優秀なゼンハーモニック作曲支援ソフトウェアとしても機能することで知られる。 * [[Desmos]] * [[Scratch (プログラミング言語)]] * [[Wolfram Alpha|Wolfarm Alpha]] == 関連項目 == {{Portal|音楽}} * [[純正律]] * [[平均律]] ** [[15平均律]] ** [[17平均律]] ** [[19平均律]] ** [[31平均律]] ** [[34平均律]] ** [[41平均律]] ** [[43平均律]] ** [[53平均律]] ** [[55平均律]] * [[セント (音楽)]] * [[音楽と数学]] * [[微分音]] * [[音階]] * [[調律]] * {{仮リンク|ボーレン・ピアース音階|en|Bohlen–Pierce scale}} * {{仮リンク|レギュラーテンペラメント|en|Regular temperament}} == 脚注 == <references responsive="1"></references> == 参考文献 == * Sethares, William (2004) [https://www.springer.com/978-1-85233-797-1 ''Tuning, Timbre, Spectrum, Scale'']. {{ISBN2|3-540-76173-X}}[[ISBN (identifier)|ISBN]] [[Special:BookSources/3-540-76173-X|3-540-76173-X]]. == 外部リンク == * [http://www.microtonalismo.com Microtonality - Web] {{In lang|es}} * [http://www.huygens-fokker.org/music/discography.html Microtonal music on CD] * [http://eceserv0.ece.wisc.edu/~sethares/ Homepage for William Sethares] * [http://en.xen.wiki/ The Xenharmonic Wiki] * [http://ja.xen.wiki/ The Xenharmonic Wiki (日本語版)] * [http://www.facebook.com/group.php?gid=2229924481 Xenharmonic Alliance] * [https://kiteguitar.com The Kite Guitar - the future of tuning] * Barbieri, Patrizio. [http://www.patriziobarbieri.it/1.htm Enharmonic instruments and music, 1470-1900]. (2008) Latina, Il Levante Libreria Editrice * [https://itunes.apple.com/album/fanfare-in-19-note-equal-tuning/id351739423 Blackwood Microtonal Compositions Easley Blackwood & Jeffrey Kust, on iTunes] Includes ''Fanfare in 19-EDO''. Also includes the ''16 notes Andantino'' as the first of the twelve etudes in that collection. * [http://www.noahjordan.ca microtonal piano work of Noah Jordan] {{デフォルトソート:せんはーもにっくおんがく}} [[Category:音楽理論]] [[Category:音楽のジャンル]]
このページで使用されているテンプレート:
テンプレート:Audio
(
ソースを閲覧
)
テンプレート:Cite journal
(
ソースを閲覧
)
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:En
(
ソースを閲覧
)
テンプレート:ISBN2
(
ソースを閲覧
)
テンプレート:In lang
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Portal
(
ソースを閲覧
)
テンプレート:Quote
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
テンプレート:要出典
(
ソースを閲覧
)
ゼンハーモニック音楽
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報