トムソン問題のソースを表示
←
トムソン問題
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''トムソン問題'''(トムソンもんだい、{{Lang-en-short|Thomson problem}}) は、[[静電エネルギー]]が最小になるよう単位球面上に ''N'' 個の[[電子]]を配置する問題である(電子間力は[[クーロンの法則]]に従うものとする)。1904年、物理学者[[J. J. トムソン]]が、後年[[ブドウパンモデル]]と呼ばれる[[原子]]模型の発表後、「(電気的な)中性原子中には、負に帯電した電子が存在している」という知見を基に提出した<ref>{{cite journal|last=Thomson| first=Joseph John|author-link=Joseph John Thomson| title=On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure|journal=[[Philosophical Magazine]] | doi=10.1080/14786440409463107 | series=Series 6 | volume=7 |number=39|pages=237–265|date= March 1904|url=http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/thomson_PhilMag_7_237_1904.pdf|dead-url=yes|archiveurl=https://web.archive.org/web/20131213172104/http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/thomson_PhilMag_7_237_1904.pdf|archive-date=13 December 2013}}</ref>。 この問題に関連して、最小エネルギー配置の幾何の研究や、''N'' を大きくしたときの最小エネルギーの研究がある。 == 数学的定式化 == トムソン問題は、数学者[[スティーヴン・スメイル]]による18個の未解決問題の1つ — "2次元球面上の点の分布" — の特別な場合である<ref> {{cite journal | first = S. | last = Smale |title = Mathematical Problems for the Next Century |journal = Mathematical Intelligencer |date =1998 |volume=20 |number=2 |pages=7–15 |citeseerx = 10.1.1.35.4101 |doi=10.1007/bf03025291 }}</ref>。冒頭述べたように単位球面( <math>r=1</math> )の場合だけ考えればよい。 電気量 <math>e_i = e_j = e</math> ( <math>e</math> は[[電気素量]])の電子ペアがもつ静電エネルギーは、クーロンの法則より :<math>U_{ij}(N)=k_e{e_i e_j \over r_{ij}}</math> ここで <math>k_e</math> は[[クーロンの法則|クーロン定数]]、 <math>r_{ij}=|\mathbf{r}_i - \mathbf{r}_j|</math> は位置ベクトル <math>\mathbf{r}_i</math>、<math>\mathbf{r}_j</math> で表した電子間距離。 <math>e=1</math>、<math>k_e=1</math> であるとしても一般性は失わない。このとき、 :<math>U_{ij}(N) = {1 \over r_{ij}}</math> ''N''-電子配置のエネルギーの総和は、ペアごとの値を合算して次のように書ける。 :<math>U(N) = \sum_{i < j} \frac{1}{r_{ij}}</math> 大局的な <math>U(N)</math> の最小化配置は、大体において数値計算で得られる。 === 例 === 電子2個の場合のトムソン問題の解は、電子が原点を挟んで最も遠ざかったときが解となる: <math>r_{ij} = 2r = 2,\quad U(2) = {1 \over 2}</math> == 既知の解 == [[File:N 2 to 5 ThomsonSolutions.png|thumb|N=5までのトムソン問題の解を図示したもの]] 最小エネルギー配置が厳密に分かっているのはほんの限られた場合だけである。 * ''N'' =1のとき:解は自明であり、電子は球面上のどこにあってもよい。このときのエネルギーは、電子が別の電場源からの影響を一切受けないことからゼロと定義することにする。 * ''N'' =2のとき:2電子が[[対蹠点]]に位置するときが解。 * ''N'' =3のとき:3電子が[[大円]]上の正三角形の頂点になるときが解<ref>{{cite journal|first1=L.|last1=Föppl |title=Stabile Anordnungen von Elektronen im Atom | journal = J. Reine Angew. Math. |number=141 |year=1912 |pages=251–301|url=http://eudml.org/doc/149380}}</ref>。 * ''N'' =4のとき:4電子が[[正四面体]]の頂点になるときが解。 * ''N'' =5のとき:コンピュータを用いた数学的厳密解が2010年に報告された。5電子が[[双三角錐]]の頂点になるときが解<ref>{{cite arXiv|last=Schwartz|first=Richard|eprint=1001.3702|title=The 5 electron case of Thomson's Problem|year=2010}}</ref>。 * ''N'' =6のとき:6電子が[[正八面体]]の頂点になるときが解<ref>{{cite journal|first=V.A. |last=Yudin |title=The minimum of potential energy of a system of point charges |journal=Discretnaya Matematika |volume=4 |number=2|year=1992|pages= 115–121 (in Russian)}}; {{cite journal|first=V. A. |last=Yudin|journal= Discrete Math. Appl.|volume= 3 |number=1| year=1993|pages=75–81 |doi=10.1515/dma.1993.3.1.75 |title=The minimum of potential energy of a system of point charges}}</ref>。 * ''N'' =12のとき:12電子が[[正二十面体]]の頂点になるときが解<ref>{{cite journal|first=N.N. |last= Andreev|title=An extremal property of the icosahedron| journal=East J. Approximation|volume=2 |number=4 |year=1996|pages=459–462}} {{MR|1426716}}, {{Zbl|0877.51021}}</ref>。 注目すべきことに、 ''N'' =4,6,12のときのトムソン問題の解は、全ての面が合同な正三角形である[[正多面体|プラトンの立体]]を形作っている。 ''N'' =8,20のときの数値計算による解は残り2つのプラトンの立体(面が正方形、正五角形)にはなっていない。 == 一般化 == 粒子間のポテンシャルが任意の形で与えられているときの基底状態を考えることもできる。数学的に正式に述べると、 ''f'' を実数値減少関数とし、全エネルギーを <math> \sum_{i < j} f(|\mathbf{r}_i - \mathbf{r}_j|)</math> とする。 伝統的に <math> f(x)=x^{-\alpha} </math> (リースの <math>\alpha</math>-カーネル)を考えることが多い。可積分なリースカーネルについては文献<ref>Landkof, N. S. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.</ref>を参照のこと。また可積分でないリースカーネルについては{{仮リンク|Poppy-seed bagel theorem|en|Poppy-seed bagel theorem}}が成り立っている<ref>Hardin, D. P.; Saff, E. B. Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004), no. 10, 1186–1194</ref>。 有名なケースは * ''α'' → ∞ としたとき:「球面上の2点間の距離の最大値が最小となる配置を求める問題」と解釈する。{{仮リンク|Tammes problem|en|Tammes problem}}として知られている。 * ''α'' = 1のとき:トムソン問題。 * ''α'' = 0のとき:<math>f(x)= \ln \left( \frac{1}{|x|} \right)</math> と解釈する。[[Whyte's problem]]として知られている。 [[超球面|高次元空間]]での ''N'' 個の点の配置を考えることもできる。{{仮リンク|球デザイン|en|spherical design}}を参照。 == 他の自然科学の問題との関係 == トムソン問題は、トムソンのブドウパンモデルにおいて一様に広がる正電荷がないものとすれば自然に導かれる<ref>Y. Levin and J. J. Arenzon, ``Why charges go to the Surface: A generalized Thomson Problem'' Europhys. Lett. Vol. 63 p. 415 (2003)</ref>。 {{quote box|width=23em|『自然哲学の大部分は原子の構造及び機構が生み出しているのだから、原子に関する発見に取るに足らないものはないし、物理学の進歩を加速させないものもない。』|—J. J.トムソン卿<ref>Sir J.J. Thomson, The Romanes Lecture, 1914 (The Atomic Theory)</ref>}} 実験によってトムソンのブドウパンモデルは原子の完全なモデルにはなり得ないことがわかったが、数値計算によるトムソン問題の変則的な解の中には、[[周期表]]上の一連の元素における自然な殻内電子配置と対応が見つかっているものもある<ref>{{cite journal|last=LaFave Jr|first=Tim|title=Correspondences between the classical electrostatic Thomson problem and atomic electronic structure|journal=Journal of Electrostatics|volume=71|issue=6|pages=1029–1035|date=December 2013|url=http://www.pagesofmind.com/FullTextPubs/La13-LaFave-2013-Correspondences-between-the-Thomson-Problem-and-Atomic-Structure.pdf|accessdate=10 Feb 2014|doi=10.1016/j.elstat.2013.10.001|arxiv=1403.2591|deadurl=yes|archiveurl=https://web.archive.org/web/20140222100807/http://www.pagesofmind.com/FullTextPubs/La13-LaFave-2013-Correspondences-between-the-Thomson-Problem-and-Atomic-Structure.pdf|archivedate=22 February 2014|df=}}</ref>。 トムソン問題はまた、{{仮リンク|電子バブル|en|electron bubble}}や、[[四重極イオントラップ]]内の金属液滴の表面配向といった他の物理モデルの研究でも有用である。 一般化されたトムソン問題は、例えば[[ウイルス]]の球状殻を構成するタンパク質のサブユニット配置を決定するときに現れる。この場合の「粒子」とは殻上のサブユニットのことである。他の具体例として、'''コロイドソーム'''(colloidosome;薬物、栄養物、生細胞等、活性成分のカプセル封じとして提案されている)における[[コロイド]]粒子の均整な配置、炭素原子の[[フラーレン]]構造、[[原子価殻電子対反発則]]の理論等が挙げられる。低温状態で、巨大単極子を中心としたシェル構造[[超伝導]]金属が形成するとされる[[量子渦|アブリコソフ-ボルテックス]]は、対数ポテンシャルによる長距離相互作用の例である。 == 現在までに知られている最良の結果 == 下記の表で、<math>N</math> は点(電荷)の個数、 <math>E_1</math> はエネルギー、対称性の記述は[[シェーンフリース記号]]([[三次元の点群]]を参照)によるもの、また <math>r_i</math> は点電荷の位置を表す。ほとんどの対称性のタイプにおいてベクトルの総和はゼロになり、従って[[電気双極子モーメント]]もゼロになる。 点集合の[[凸包]]による多面体も併せて考えることが慣習となっている。ここで、<math>v_i</math> は添字に等しい辺が集まる頂点の数、<math>e</math> は辺の数、<math>f_3</math> は三角形の面の数、<math>f_4</math> は四角形の面の数、<math>\theta_1</math> は隣接する2辺が成す角の最小値である。辺の長さは一定とは限らないことに注意。このため( ''N'' =4, 6, 12, 24を除いて) 凸包は表の最終列に記した[[一様多面体]]または[[ジョンソンの立体]]とはグラフ同型であるにとどまる<ref> Kevin Brown. [http://mathpages.com/home/kmath005/kmath005.htm "Min-Energy Configurations of Electrons On A Sphere"]. Retrieved 2014-05-01. </ref>。 {| class="wikitable" |- ! ''N'' ! <math>E_{1}</math> ! 対称性 ! <math>\left| \sum \mathbf{r}_i \right| </math> ! <math>v_3</math> ! <math>v_4</math> ! <math>v_5</math> ! <math>v_6</math> ! <math>v_7</math> ! <math>v_8</math> ! <math>e</math> ! <math>f_3</math> ! <math>f_4</math> ! <math>\theta_1</math> ! 対応する多面体 |- | align=right | 2 | align=right | 0.500000000 | align=center | <math>D_{\infty h}</math> | align=center | 0 | align=center | – | align=center | – | align=center | – | align=center | – | align=center | – | align=center | – | align=right | 1 | align=center | – | align=center | – | align=right | 180.000° | [[二角形]] |- | align=right | 3 | align=right | 1.732050808 | align=center | <math>D_{3h}</math> | align=center | 0 | align=center | – | align=center | – | align=center | – | align=center | – | align=center | – | align=center | – | align=right | 3 | align=right | 1 | align=center | – | align=right | 120.000° | [[三角形]] |- | align=right | 4 | align=right | 3.674234614 | align=center | <math>T_d</math> | align=center | 0 | align=right | 4 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 6 | align=right | 4 | align=right | 0 | align=right | 109.471° | [[四面体]] |- | align=right | 5 | align=right | 6.474691495 | align=center | <math>D_{3h}</math> | align=center | 0 | align=right | 2 | align=right | 3 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 9 | align=right | 6 | align=right | 0 | align=right | 90.000° | [[双三角錐]] |- | align=right | 6 | align=right | 9.985281374 | align=center | <math>O_h</math> | align=center | 0 | align=right | 0 | align=right | 6 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 8 | align=right | 0 | align=right | 90.000° | [[八面体]] |- | align=right | 7 | align=right | 14.452977414 | align=center | <math>D_{5h}</math> | align=center | 0 | align=right | 0 | align=right | 5 | align=right | 2 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 15 | align=right | 10 | align=right | 0 | align=right | 72.000° | [[双五角錐]] |- | align=right | 8 | align=right | 19.675287861 | align=center | <math>D_{4d}</math> | align=center | 0 | align=right | 0 | align=right | 8 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 16 | align=right | 8 | align=right | 2 | align=right | 71.694° | {{仮リンク|反四角柱形|en|square antiprism}} |- | align=right | 9 | align=right | 25.759986531 | align=center | <math>D_{3h}</math> | align=center | 0 | align=right | 0 | align=right | 3 | align=right | 6 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 21 | align=right | 14 | align=right | 0 | align=right | 69.190° | [[三側錐三角柱]] |- | align=right | 10 | align=right | 32.716949460 | align=center | <math>D_{4d}</math> | align=center | 0 | align=right | 0 | align=right | 2 | align=right | 8 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 16 | align=right | 0 | align=right | 64.996° | [[双四角錐反柱]] |- | align=right | 11 | align=right | 40.596450510 | align=center | <math>C_{2v}</math> | align=center | 0.013219635 | align=right | 0 | align=right | 2 | align=right | 8 | align=right | 1 | align=right | 0 | align=right | 0 | align=right | 27 | align=right | 18 | align=right | 0 | align=right | 58.540° | {{仮リンク|edge-contracted icosahedron|en|edge-contracted icosahedron}} |- | align=right | 12 | align=right | 49.165253058 | align=center | <math>I_h</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 30 | align=right | 20 | align=right | 0 | align=right | 63.435° | [[正二十面体]] |- | align=right | 13 | align=right | 58.853230612 | align=center | <math>C_{2v}</math> | align=center | 0.008820367 | align=right | 0 | align=right | 1 | align=right | 10 | align=right | 2 | align=right | 0 | align=right | 0 | align=right | 33 | align=right | 22 | align=right | 0 | align=right | 52.317° |- | align=right | 14 | align=right | 69.306363297 | align=center | <math>D_{6d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 2 | align=right | 0 | align=right | 0 | align=right | 36 | align=right | 24 | align=right | 0 | align=right | 52.866° | gyroelongated hexagonal dipyramid |- | align=right | 15 | align=right | 80.670244114 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 3 | align=right | 0 | align=right | 0 | align=right | 39 | align=right | 26 | align=right | 0 | align=right | 49.225° |- | align=right | 16 | align=right | 92.911655302 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 4 | align=right | 0 | align=right | 0 | align=right | 42 | align=right | 28 | align=right | 0 | align=right | 48.936° |- | align=right | 17 | align=right | 106.050404829 | align=center | <math>D_{5h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 5 | align=right | 0 | align=right | 0 | align=right | 45 | align=right | 30 | align=right | 0 | align=right | 50.108° |- | align=right | 18 | align=right | 120.084467447 | align=center | <math>D_{4d}</math> | align=center | 0 | align=right | 0 | align=right | 2 | align=right | 8 | align=right | 8 | align=right | 0 | align=right | 0 | align=right | 48 | align=right | 32 | align=right | 0 | align=right | 47.534° |- | align=right | 19 | align=right | 135.089467557 | align=center | <math>C_{2v}</math> | align=center | 0.000135163 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 5 | align=right | 0 | align=right | 0 | align=right | 50 | align=right | 32 | align=right | 1 | align=right | 44.910° |- | align=right | 20 | align=right | 150.881568334 | align=center | <math>D_{3h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 8 | align=right | 0 | align=right | 0 | align=right | 54 | align=right | 36 | align=right | 0 | align=right | 46.093° |- | align=right | 21 | align=right | 167.641622399 | align=center | <math>C_{2v}</math> | align=center | 0.001406124 | align=right | 0 | align=right | 1 | align=right | 10 | align=right | 10 | align=right | 0 | align=right | 0 | align=right | 57 | align=right | 38 | align=right | 0 | align=right | 44.321° |- | align=right | 22 | align=right | 185.287536149 | align=center | <math>T_d</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 10 | align=right | 0 | align=right | 0 | align=right | 60 | align=right | 40 | align=right | 0 | align=right | 43.302° |- | align=right | 23 | align=right | 203.930190663 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 11 | align=right | 0 | align=right | 0 | align=right | 63 | align=right | 42 | align=right | 0 | align=right | 41.481° |- | align=right | 24 | align=right | 223.347074052 | align=center | <math>O</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 0 | align=right | 0 | align=right | 0 | align=right | 60 | align=right | 32 | align=right | 6 | align=right | 42.065° | [[変形立方体]] |- | align=right | 25 | align=right | 243.812760299 | align=center | <math>C_s</math> | align=center | 0.001021305 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 11 | align=right | 0 | align=right | 0 | align=right | 68 | align=right | 44 | align=right | 1 | align=right | 39.610° |- | align=right | 26 | align=right | 265.133326317 | align=center | <math>C_2</math> | align=center | 0.001919065 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 14 | align=right | 0 | align=right | 0 | align=right | 72 | align=right | 48 | align=right | 0 | align=right | 38.842° |- | align=right | 27 | align=right | 287.302615033 | align=center | <math>D_{5h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 15 | align=right | 0 | align=right | 0 | align=right | 75 | align=right | 50 | align=right | 0 | align=right | 39.940° |- | align=right | 28 | align=right | 310.491542358 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 16 | align=right | 0 | align=right | 0 | align=right | 78 | align=right | 52 | align=right | 0 | align=right | 37.824° |- | align=right | 29 | align=right | 334.634439920 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 17 | align=right | 0 | align=right | 0 | align=right | 81 | align=right | 54 | align=right | 0 | align=right | 36.391° |- | align=right | 30 | align=right | 359.603945904 | align=center | <math>D_2</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 18 | align=right | 0 | align=right | 0 | align=right | 84 | align=right | 56 | align=right | 0 | align=right | 36.942° |- | align=right | 31 | align=right | 385.530838063 | align=center | <math>C_{3v}</math> | align=center | 0.003204712 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 19 | align=right | 0 | align=right | 0 | align=right | 87 | align=right | 58 | align=right | 0 | align=right | 36.373° |- | align=right | 32 | align=right | 412.261274651 | align=center | <math>I_h</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 20 | align=right | 0 | align=right | 0 | align=right | 90 | align=right | 60 | align=right | 0 | align=right | 37.377° |- | align=right | 33 | align=right | 440.204057448 | align=center | <math>C_s</math> | align=center | 0.004356481 | align=right | 0 | align=right | 0 | align=right | 15 | align=right | 17 | align=right | 1 | align=right | 0 | align=right | 92 | align=right | 60 | align=right | 1 | align=right | 33.700° |- | align=right | 34 | align=right | 468.904853281 | align=center | <math>D_2</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 22 | align=right | 0 | align=right | 0 | align=right | 96 | align=right | 64 | align=right | 0 | align=right | 33.273° |- | align=right | 35 | align=right | 498.569872491 | align=center | <math>C_2</math> | align=center | 0.000419208 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 23 | align=right | 0 | align=right | 0 | align=right | 99 | align=right | 66 | align=right | 0 | align=right | 33.100° |- | align=right | 36 | align=right | 529.122408375 | align=center | <math>D_2</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 24 | align=right | 0 | align=right | 0 | align=right | 102 | align=right | 68 | align=right | 0 | align=right | 33.229° |- | align=right | 37 | align=right | 560.618887731 | align=center | <math>D_{5h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 25 | align=right | 0 | align=right | 0 | align=right | 105 | align=right | 70 | align=right | 0 | align=right | 32.332° |- | align=right | 38 | align=right | 593.038503566 | align=center | <math>D_{6d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 26 | align=right | 0 | align=right | 0 | align=right | 108 | align=right | 72 | align=right | 0 | align=right | 33.236° |- | align=right | 39 | align=right | 626.389009017 | align=center | <math>D_{3h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 27 | align=right | 0 | align=right | 0 | align=right | 111 | align=right | 74 | align=right | 0 | align=right | 32.053° |- | align=right | 40 | align=right | 660.675278835 | align=center | <math>T_d</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 28 | align=right | 0 | align=right | 0 | align=right | 114 | align=right | 76 | align=right | 0 | align=right | 31.916° |- | align=right | 41 | align=right | 695.916744342 | align=center | <math>D_{3h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 29 | align=right | 0 | align=right | 0 | align=right | 117 | align=right | 78 | align=right | 0 | align=right | 31.528° |- | align=right | 42 | align=right | 732.078107544 | align=center | <math>D_{5h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 30 | align=right | 0 | align=right | 0 | align=right | 120 | align=right | 80 | align=right | 0 | align=right | 31.245° |- | align=right | 43 | align=right | 769.190846459 | align=center | <math>C_{2v}</math> | align=center | 0.000399668 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 31 | align=right | 0 | align=right | 0 | align=right | 123 | align=right | 82 | align=right | 0 | align=right | 30.867° |- | align=right | 44 | align=right | 807.174263085 | align=center | <math>O_h</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 20 | align=right | 0 | align=right | 0 | align=right | 120 | align=right | 72 | align=right | 6 | align=right | 31.258° |- | align=right | 45 | align=right | 846.188401061 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 33 | align=right | 0 | align=right | 0 | align=right | 129 | align=right | 86 | align=right | 0 | align=right | 30.207° |- | align=right | 46 | align=right | 886.167113639 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 34 | align=right | 0 | align=right | 0 | align=right | 132 | align=right | 88 | align=right | 0 | align=right | 29.790° |- | align=right | 47 | align=right | 927.059270680 | align=center | <math>C_s</math> | align=center | 0.002482914 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 33 | align=right | 0 | align=right | 0 | align=right | 134 | align=right | 88 | align=right | 1 | align=right | 28.787° |- | align=right | 48 | align=right | 968.713455344 | align=center | <math>O</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 24 | align=right | 0 | align=right | 0 | align=right | 132 | align=right | 80 | align=right | 6 | align=right | 29.690° |- | align=right | 49 | align=right | 1011.557182654 | align=center | <math>C_3</math> | align=center | 0.001529341 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 37 | align=right | 0 | align=right | 0 | align=right | 141 | align=right | 94 | align=right | 0 | align=right | 28.387° |- | align=right | 50 | align=right | 1055.182314726 | align=center | <math>D_{6d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 38 | align=right | 0 | align=right | 0 | align=right | 144 | align=right | 96 | align=right | 0 | align=right | 29.231° |- | align=right | 51 | align=right | 1099.819290319 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 39 | align=right | 0 | align=right | 0 | align=right | 147 | align=right | 98 | align=right | 0 | align=right | 28.165° |- | align=right | 52 | align=right | 1145.418964319 | align=center | <math>C_3</math> | align=center | 0.000457327 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 40 | align=right | 0 | align=right | 0 | align=right | 150 | align=right | 100 | align=right | 0 | align=right | 27.670° |- | align=right | 53 | align=right | 1191.922290416 | align=center | <math>C_{2v}</math> | align=center | 0.000278469 | align=right | 0 | align=right | 0 | align=right | 18 | align=right | 35 | align=right | 0 | align=right | 0 | align=right | 150 | align=right | 96 | align=right | 3 | align=right | 27.137° |- | align=right | 54 | align=right | 1239.361474729 | align=center | <math>C_2</math> | align=center | 0.000137870 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 42 | align=right | 0 | align=right | 0 | align=right | 156 | align=right | 104 | align=right | 0 | align=right | 27.030° |- | align=right | 55 | align=right | 1287.772720783 | align=center | <math>C_2</math> | align=center | 0.000391696 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 43 | align=right | 0 | align=right | 0 | align=right | 159 | align=right | 106 | align=right | 0 | align=right | 26.615° |- | align=right | 56 | align=right | 1337.094945276 | align=center | <math>D_2</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 44 | align=right | 0 | align=right | 0 | align=right | 162 | align=right | 108 | align=right | 0 | align=right | 26.683° |- | align=right | 57 | align=right | 1387.383229253 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 45 | align=right | 0 | align=right | 0 | align=right | 165 | align=right | 110 | align=right | 0 | align=right | 26.702° |- | align=right | 58 | align=right | 1438.618250640 | align=center | <math>D_2</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 46 | align=right | 0 | align=right | 0 | align=right | 168 | align=right | 112 | align=right | 0 | align=right | 26.155° |- | align=right | 59 | align=right | 1490.773335279 | align=center | <math>C_2</math> | align=center | 0.000154286 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 43 | align=right | 2 | align=right | 0 | align=right | 171 | align=right | 114 | align=right | 0 | align=right | 26.170° |- | align=right | 60 | align=right | 1543.830400976 | align=center | <math>D_3</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 48 | align=right | 0 | align=right | 0 | align=right | 174 | align=right | 116 | align=right | 0 | align=right | 25.958° |- | align=right | 61 | align=right | 1597.941830199 | align=center | <math>C_1</math> | align=center | 0.001091717 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 49 | align=right | 0 | align=right | 0 | align=right | 177 | align=right | 118 | align=right | 0 | align=right | 25.392° |- | align=right | 62 | align=right | 1652.909409898 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 50 | align=right | 0 | align=right | 0 | align=right | 180 | align=right | 120 | align=right | 0 | align=right | 25.880° |- | align=right | 63 | align=right | 1708.879681503 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 51 | align=right | 0 | align=right | 0 | align=right | 183 | align=right | 122 | align=right | 0 | align=right | 25.257° |- | align=right | 64 | align=right | 1765.802577927 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 52 | align=right | 0 | align=right | 0 | align=right | 186 | align=right | 124 | align=right | 0 | align=right | 24.920° |- | align=right | 65 | align=right | 1823.667960264 | align=center | <math>C_{2}</math> | align=center | 0.000399515 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 53 | align=right | 0 | align=right | 0 | align=right | 189 | align=right | 126 | align=right | 0 | align=right | 24.527° |- | align=right | 66 | align=right | 1882.441525304 | align=center | <math>C_{2}</math> | align=center | 0.000776245 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 54 | align=right | 0 | align=right | 0 | align=right | 192 | align=right | 128 | align=right | 0 | align=right | 24.765° |- | align=right | 67 | align=right | 1942.122700406 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 55 | align=right | 0 | align=right | 0 | align=right | 195 | align=right | 130 | align=right | 0 | align=right | 24.727° |- | align=right | 68 | align=right | 2002.874701749 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 56 | align=right | 0 | align=right | 0 | align=right | 198 | align=right | 132 | align=right | 0 | align=right | 24.433° |- | align=right | 69 | align=right | 2064.533483235 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 57 | align=right | 0 | align=right | 0 | align=right | 201 | align=right | 134 | align=right | 0 | align=right | 24.137° |- | align=right | 70 | align=right | 2127.100901551 | align=center | <math>D_{2d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 50 | align=right | 0 | align=right | 0 | align=right | 200 | align=right | 128 | align=right | 4 | align=right | 24.291° |- | align=right | 71 | align=right | 2190.649906425 | align=center | <math>C_{2}</math> | align=center | 0.001256769 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 55 | align=right | 2 | align=right | 0 | align=right | 207 | align=right | 138 | align=right | 0 | align=right | 23.803° |- | align=right | 72 | align=right | 2255.001190975 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 60 | align=right | 0 | align=right | 0 | align=right | 210 | align=right | 140 | align=right | 0 | align=right | 24.492° |- | align=right | 73 | align=right | 2320.633883745 | align=center | <math>C_{2}</math> | align=center | 0.001572959 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 61 | align=right | 0 | align=right | 0 | align=right | 213 | align=right | 142 | align=right | 0 | align=right | 22.810° |- | align=right | 74 | align=right | 2387.072981838 | align=center | <math>C_{2}</math> | align=center | 0.000641539 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 62 | align=right | 0 | align=right | 0 | align=right | 216 | align=right | 144 | align=right | 0 | align=right | 22.966° |- | align=right | 75 | align=right | 2454.369689040 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 63 | align=right | 0 | align=right | 0 | align=right | 219 | align=right | 146 | align=right | 0 | align=right | 22.736° |- | align=right | 76 | align=right | 2522.674871841 | align=center | <math>C_{2}</math> | align=center | 0.000943474 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 64 | align=right | 0 | align=right | 0 | align=right | 222 | align=right | 148 | align=right | 0 | align=right | 22.886° |- | align=right | 77 | align=right | 2591.850152354 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 65 | align=right | 0 | align=right | 0 | align=right | 225 | align=right | 150 | align=right | 0 | align=right | 23.286° |- | align=right | 78 | align=right | 2662.046474566 | align=center | <math>T_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 66 | align=right | 0 | align=right | 0 | align=right | 228 | align=right | 152 | align=right | 0 | align=right | 23.426° |- | align=right | 79 | align=right | 2733.248357479 | align=center | <math>C_{s}</math> | align=center | 0.000702921 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 63 | align=right | 1 | align=right | 0 | align=right | 230 | align=right | 152 | align=right | 1 | align=right | 22.636° |- | align=right | 80 | align=right | 2805.355875981 | align=center | <math>D_{4d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 16 | align=right | 64 | align=right | 0 | align=right | 0 | align=right | 232 | align=right | 152 | align=right | 2 | align=right | 22.778° |- | align=right | 81 | align=right | 2878.522829664 | align=center | <math>C_{2}</math> | align=center | 0.000194289 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 69 | align=right | 0 | align=right | 0 | align=right | 237 | align=right | 158 | align=right | 0 | align=right | 21.892° |- | align=right | 82 | align=right | 2952.569675286 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 70 | align=right | 0 | align=right | 0 | align=right | 240 | align=right | 160 | align=right | 0 | align=right | 22.206° |- | align=right | 83 | align=right | 3027.528488921 | align=center | <math>C_{2}</math> | align=center | 0.000339815 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 67 | align=right | 2 | align=right | 0 | align=right | 243 | align=right | 162 | align=right | 0 | align=right | 21.646° |- | align=right | 84 | align=right | 3103.465124431 | align=center | <math>C_{2}</math> | align=center | 0.000401973 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 72 | align=right | 0 | align=right | 0 | align=right | 246 | align=right | 164 | align=right | 0 | align=right | 21.513° |- | align=right | 85 | align=right | 3180.361442939 | align=center | <math>C_{2}</math> | align=center | 0.000416581 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 73 | align=right | 0 | align=right | 0 | align=right | 249 | align=right | 166 | align=right | 0 | align=right | 21.498° |- | align=right | 86 | align=right | 3258.211605713 | align=center | <math>C_{2}</math> | align=center | 0.001378932 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 74 | align=right | 0 | align=right | 0 | align=right | 252 | align=right | 168 | align=right | 0 | align=right | 21.522° |- | align=right | 87 | align=right | 3337.000750014 | align=center | <math>C_{2}</math> | align=center | 0.000754863 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 75 | align=right | 0 | align=right | 0 | align=right | 255 | align=right | 170 | align=right | 0 | align=right | 21.456° |- | align=right | 88 | align=right | 3416.720196758 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 76 | align=right | 0 | align=right | 0 | align=right | 258 | align=right | 172 | align=right | 0 | align=right | 21.486° |- | align=right | 89 | align=right | 3497.439018625 | align=center | <math>C_{2}</math> | align=center | 0.000070891 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 77 | align=right | 0 | align=right | 0 | align=right | 261 | align=right | 174 | align=right | 0 | align=right | 21.182° |- | align=right | 90 | align=right | 3579.091222723 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 78 | align=right | 0 | align=right | 0 | align=right | 264 | align=right | 176 | align=right | 0 | align=right | 21.230° |- | align=right | 91 | align=right | 3661.713699320 | align=center | <math>C_{2}</math> | align=center | 0.000033221 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 79 | align=right | 0 | align=right | 0 | align=right | 267 | align=right | 178 | align=right | 0 | align=right | 21.105° |- | align=right | 92 | align=right | 3745.291636241 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 80 | align=right | 0 | align=right | 0 | align=right | 270 | align=right | 180 | align=right | 0 | align=right | 21.026° |- | align=right | 93 | align=right | 3829.844338421 | align=center | <math>C_{2}</math> | align=center | 0.000213246 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 81 | align=right | 0 | align=right | 0 | align=right | 273 | align=right | 182 | align=right | 0 | align=right | 20.751° |- | align=right | 94 | align=right | 3915.309269620 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 82 | align=right | 0 | align=right | 0 | align=right | 276 | align=right | 184 | align=right | 0 | align=right | 20.952° |- | align=right | 95 | align=right | 4001.771675565 | align=center | <math>C_{2}</math> | align=center | 0.000116638 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 83 | align=right | 0 | align=right | 0 | align=right | 279 | align=right | 186 | align=right | 0 | align=right | 20.711° |- | align=right | 96 | align=right | 4089.154010060 | align=center | <math>C_{2}</math> | align=center | 0.000036310 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 84 | align=right | 0 | align=right | 0 | align=right | 282 | align=right | 188 | align=right | 0 | align=right | 20.687° |- | align=right | 97 | align=right | 4177.533599622 | align=center | <math>C_{2}</math> | align=center | 0.000096437 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 85 | align=right | 0 | align=right | 0 | align=right | 285 | align=right | 190 | align=right | 0 | align=right | 20.450° |- | align=right | 98 | align=right | 4266.822464156 | align=center | <math>C_{2}</math> | align=center | 0.000112916 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 86 | align=right | 0 | align=right | 0 | align=right | 288 | align=right | 192 | align=right | 0 | align=right | 20.422° |- | align=right | 99 | align=right | 4357.139163132 | align=center | <math>C_{2}</math> | align=center | 0.000156508 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 87 | align=right | 0 | align=right | 0 | align=right | 291 | align=right | 194 | align=right | 0 | align=right | 20.284° |- | align=right | 100 | align=right | 4448.350634331 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 88 | align=right | 0 | align=right | 0 | align=right | 294 | align=right | 196 | align=right | 0 | align=right | 20.297° |- | align=right | 101 | align=right | 4540.590051694 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 89 | align=right | 0 | align=right | 0 | align=right | 297 | align=right | 198 | align=right | 0 | align=right | 20.011° |- | align=right | 102 | align=right | 4633.736565899 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 90 | align=right | 0 | align=right | 0 | align=right | 300 | align=right | 200 | align=right | 0 | align=right | 20.040° |- | align=right | 103 | align=right | 4727.836616833 | align=center | <math>C_{2}</math> | align=center | 0.000201245 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 91 | align=right | 0 | align=right | 0 | align=right | 303 | align=right | 202 | align=right | 0 | align=right | 19.907° |- | align=right | 104 | align=right | 4822.876522746 | align=center | <math>D_{6}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 92 | align=right | 0 | align=right | 0 | align=right | 306 | align=right | 204 | align=right | 0 | align=right | 19.957° |- | align=right | 105 | align=right | 4919.000637616 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 93 | align=right | 0 | align=right | 0 | align=right | 309 | align=right | 206 | align=right | 0 | align=right | 19.842° |- | align=right | 106 | align=right | 5015.984595705 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 94 | align=right | 0 | align=right | 0 | align=right | 312 | align=right | 208 | align=right | 0 | align=right | 19.658° |- | align=right | 107 | align=right | 5113.953547724 | align=center | <math>C_{2}</math> | align=center | 0.000064137 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 95 | align=right | 0 | align=right | 0 | align=right | 315 | align=right | 210 | align=right | 0 | align=right | 19.327° |- | align=right | 108 | align=right | 5212.813507831 | align=center | <math>C_{2}</math> | align=center | 0.000432525 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 96 | align=right | 0 | align=right | 0 | align=right | 318 | align=right | 212 | align=right | 0 | align=right | 19.327° |- | align=right | 109 | align=right | 5312.735079920 | align=center | <math>C_{2}</math> | align=center | 0.000647299 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 93 | align=right | 2 | align=right | 0 | align=right | 321 | align=right | 214 | align=right | 0 | align=right | 19.103° |- | align=right | 110 | align=right | 5413.549294192 | align=center | <math>D_{6}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 98 | align=right | 0 | align=right | 0 | align=right | 324 | align=right | 216 | align=right | 0 | align=right | 19.476° |- | align=right | 111 | align=right | 5515.293214587 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 99 | align=right | 0 | align=right | 0 | align=right | 327 | align=right | 218 | align=right | 0 | align=right | 19.255° |- | align=right | 112 | align=right | 5618.044882327 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 100 | align=right | 0 | align=right | 0 | align=right | 330 | align=right | 220 | align=right | 0 | align=right | 19.351° |- | align=right | 113 | align=right | 5721.824978027 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 101 | align=right | 0 | align=right | 0 | align=right | 333 | align=right | 222 | align=right | 0 | align=right | 18.978° |- | align=right | 114 | align=right | 5826.521572163 | align=center | <math>C_{2}</math> | align=center | 0.000149772 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 102 | align=right | 0 | align=right | 0 | align=right | 336 | align=right | 224 | align=right | 0 | align=right | 18.836° |- | align=right | 115 | align=right | 5932.181285777 | align=center | <math>C_{3}</math> | align=center | 0.000049972 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 103 | align=right | 0 | align=right | 0 | align=right | 339 | align=right | 226 | align=right | 0 | align=right | 18.458° |- | align=right | 116 | align=right | 6038.815593579 | align=center | <math>C_{2}</math> | align=center | 0.000259726 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 104 | align=right | 0 | align=right | 0 | align=right | 342 | align=right | 228 | align=right | 0 | align=right | 18.386° |- | align=right | 117 | align=right | 6146.342446579 | align=center | <math>C_{2}</math> | align=center | 0.000127609 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 105 | align=right | 0 | align=right | 0 | align=right | 345 | align=right | 230 | align=right | 0 | align=right | 18.566° |- | align=right | 118 | align=right | 6254.877027790 | align=center | <math>C_{2}</math> | align=center | 0.000332475 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 106 | align=right | 0 | align=right | 0 | align=right | 348 | align=right | 232 | align=right | 0 | align=right | 18.455° |- | align=right | 119 | align=right | 6364.347317479 | align=center | <math>C_{2}</math> | align=center | 0.000685590 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 107 | align=right | 0 | align=right | 0 | align=right | 351 | align=right | 234 | align=right | 0 | align=right | 18.336° |- | align=right | 120 | align=right | 6474.756324980 | align=center | <math>C_{s}</math> | align=center | 0.001373062 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 108 | align=right | 0 | align=right | 0 | align=right | 354 | align=right | 236 | align=right | 0 | align=right | 18.418° |- | align=right | 121 | align=right | 6586.121949584 | align=center | <math>C_{3}</math> | align=center | 0.000838863 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 109 | align=right | 0 | align=right | 0 | align=right | 357 | align=right | 238 | align=right | 0 | align=right | 18.199° |- | align=right | 122 | align=right | 6698.374499261 | align=center | <math>I_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 110 | align=right | 0 | align=right | 0 | align=right | 360 | align=right | 240 | align=right | 0 | align=right | 18.612° |- | align=right | 123 | align=right | 6811.827228174 | align=center | <math>C_{2v}</math> | align=center | 0.001939754 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 107 | align=right | 2 | align=right | 0 | align=right | 363 | align=right | 242 | align=right | 0 | align=right | 17.840° |- | align=right | 124 | align=right | 6926.169974193 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 112 | align=right | 0 | align=right | 0 | align=right | 366 | align=right | 244 | align=right | 0 | align=right | 18.111° |- | align=right | 125 | align=right | 7041.473264023 | align=center | <math>C_{2}</math> | align=center | 0.000088274 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 113 | align=right | 0 | align=right | 0 | align=right | 369 | align=right | 246 | align=right | 0 | align=right | 17.867° |- | align=right | 126 | align=right | 7157.669224867 | align=center | <math>D_{4}</math> | align=center | 0 | align=right | 0 | align=right | 2 | align=right | 16 | align=right | 100 | align=right | 8 | align=right | 0 | align=right | 372 | align=right | 248 | align=right | 0 | align=right | 17.920° |- | align=right | 127 | align=right | 7274.819504675 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 115 | align=right | 0 | align=right | 0 | align=right | 375 | align=right | 250 | align=right | 0 | align=right | 17.877° |- | align=right | 128 | align=right | 7393.007443068 | align=center | <math>C_{2}</math> | align=center | 0.000054132 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 116 | align=right | 0 | align=right | 0 | align=right | 378 | align=right | 252 | align=right | 0 | align=right | 17.814° |- | align=right | 129 | align=right | 7512.107319268 | align=center | <math>C_{2}</math> | align=center | 0.000030099 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 117 | align=right | 0 | align=right | 0 | align=right | 381 | align=right | 254 | align=right | 0 | align=right | 17.743° |- | align=right | 130 | align=right | 7632.167378912 | align=center | <math>C_{2}</math> | align=center | 0.000025622 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 118 | align=right | 0 | align=right | 0 | align=right | 384 | align=right | 256 | align=right | 0 | align=right | 17.683° |- | align=right | 131 | align=right | 7753.205166941 | align=center | <math>C_{2}</math> | align=center | 0.000305133 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 119 | align=right | 0 | align=right | 0 | align=right | 387 | align=right | 258 | align=right | 0 | align=right | 17.511° |- | align=right | 132 | align=right | 7875.045342797 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 120 | align=right | 0 | align=right | 0 | align=right | 390 | align=right | 260 | align=right | 0 | align=right | 17.958° |- | align=right | 133 | align=right | 7998.179212898 | align=center | <math>C_{3}</math> | align=center | 0.000591438 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 121 | align=right | 0 | align=right | 0 | align=right | 393 | align=right | 262 | align=right | 0 | align=right | 17.133° |- | align=right | 134 | align=right | 8122.089721194 | align=center | <math>C_{2}</math> | align=center | 0.000470268 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 122 | align=right | 0 | align=right | 0 | align=right | 396 | align=right | 264 | align=right | 0 | align=right | 17.214° |- | align=right | 135 | align=right | 8246.909486992 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 123 | align=right | 0 | align=right | 0 | align=right | 399 | align=right | 266 | align=right | 0 | align=right | 17.431° |- | align=right | 136 | align=right | 8372.743302539 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 124 | align=right | 0 | align=right | 0 | align=right | 402 | align=right | 268 | align=right | 0 | align=right | 17.485° |- | align=right | 137 | align=right | 8499.534494782 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 125 | align=right | 0 | align=right | 0 | align=right | 405 | align=right | 270 | align=right | 0 | align=right | 17.560° |- | align=right | 138 | align=right | 8627.406389880 | align=center | <math>C_{2}</math> | align=center | 0.000473576 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 126 | align=right | 0 | align=right | 0 | align=right | 408 | align=right | 272 | align=right | 0 | align=right | 16.924° |- | align=right | 139 | align=right | 8756.227056057 | align=center | <math>C_{2}</math> | align=center | 0.000404228 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 127 | align=right | 0 | align=right | 0 | align=right | 411 | align=right | 274 | align=right | 0 | align=right | 16.673° |- | align=right | 140 | align=right | 8885.980609041 | align=center | <math>C_{1}</math> | align=center | 0.000630351 | align=right | 0 | align=right | 0 | align=right | 13 | align=right | 126 | align=right | 1 | align=right | 0 | align=right | 414 | align=right | 276 | align=right | 0 | align=right | 16.773° |- | align=right | 141 | align=right | 9016.615349190 | align=center | <math>C_{2v}</math> | align=center | 0.000376365 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 126 | align=right | 0 | align=right | 1 | align=right | 417 | align=right | 278 | align=right | 0 | align=right | 16.962° |- | align=right | 142 | align=right | 9148.271579993 | align=center | <math>C_{2}</math> | align=center | 0.000550138 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 130 | align=right | 0 | align=right | 0 | align=right | 420 | align=right | 280 | align=right | 0 | align=right | 16.840° |- | align=right | 143 | align=right | 9280.839851192 | align=center | <math>C_{2}</math> | align=center | 0.000255449 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 131 | align=right | 0 | align=right | 0 | align=right | 423 | align=right | 282 | align=right | 0 | align=right | 16.782° |- | align=right | 144 | align=right | 9414.371794460 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 132 | align=right | 0 | align=right | 0 | align=right | 426 | align=right | 284 | align=right | 0 | align=right | 16.953° |- | align=right | 145 | align=right | 9548.928837232 | align=center | <math>C_{s}</math> | align=center | 0.000094938 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 133 | align=right | 0 | align=right | 0 | align=right | 429 | align=right | 286 | align=right | 0 | align=right | 16.841° |- | align=right | 146 | align=right | 9684.381825575 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 134 | align=right | 0 | align=right | 0 | align=right | 432 | align=right | 288 | align=right | 0 | align=right | 16.905° |- | align=right | 147 | align=right | 9820.932378373 | align=center | <math>C_{2}</math> | align=center | 0.000636651 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 135 | align=right | 0 | align=right | 0 | align=right | 435 | align=right | 290 | align=right | 0 | align=right | 16.458° |- | align=right | 148 | align=right | 9958.406004270 | align=center | <math>C_{2}</math> | align=center | 0.000203701 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 136 | align=right | 0 | align=right | 0 | align=right | 438 | align=right | 292 | align=right | 0 | align=right | 16.627° |- | align=right | 149 | align=right | 10096.859907397 | align=center | <math>C_{1}</math> | align=center | 0.000638186 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 133 | align=right | 2 | align=right | 0 | align=right | 441 | align=right | 294 | align=right | 0 | align=right | 16.344° |- | align=right | 150 | align=right | 10236.196436701 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 138 | align=right | 0 | align=right | 0 | align=right | 444 | align=right | 296 | align=right | 0 | align=right | 16.405° |- | align=right | 151 | align=right | 10376.571469275 | align=center | <math>C_{2}</math> | align=center | 0.000153836 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 139 | align=right | 0 | align=right | 0 | align=right | 447 | align=right | 298 | align=right | 0 | align=right | 16.163° |- | align=right | 152 | align=right | 10517.867592878 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 140 | align=right | 0 | align=right | 0 | align=right | 450 | align=right | 300 | align=right | 0 | align=right | 16.117° |- | align=right | 153 | align=right | 10660.082748237 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 141 | align=right | 0 | align=right | 0 | align=right | 453 | align=right | 302 | align=right | 0 | align=right | 16.390° |- | align=right | 154 | align=right | 10803.372421141 | align=center | <math>C_{2}</math> | align=center | 0.000735800 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 142 | align=right | 0 | align=right | 0 | align=right | 456 | align=right | 304 | align=right | 0 | align=right | 16.078° |- | align=right | 155 | align=right | 10947.574692279 | align=center | <math>C_{2}</math> | align=center | 0.000603670 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 143 | align=right | 0 | align=right | 0 | align=right | 459 | align=right | 306 | align=right | 0 | align=right | 15.990° |- | align=right | 156 | align=right | 11092.798311456 | align=center | <math>C_{2}</math> | align=center | 0.000508534 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 144 | align=right | 0 | align=right | 0 | align=right | 462 | align=right | 308 | align=right | 0 | align=right | 15.822° |- | align=right | 157 | align=right | 11238.903041156 | align=center | <math>C_{2}</math> | align=center | 0.000357679 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 145 | align=right | 0 | align=right | 0 | align=right | 465 | align=right | 310 | align=right | 0 | align=right | 15.948° |- | align=right | 158 | align=right | 11385.990186197 | align=center | <math>C_{2}</math> | align=center | 0.000921918 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 146 | align=right | 0 | align=right | 0 | align=right | 468 | align=right | 312 | align=right | 0 | align=right | 15.987° |- | align=right | 159 | align=right | 11534.023960956 | align=center | <math>C_{2}</math> | align=center | 0.000381457 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 147 | align=right | 0 | align=right | 0 | align=right | 471 | align=right | 314 | align=right | 0 | align=right | 15.960° |- | align=right | 160 | align=right | 11683.054805549 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 148 | align=right | 0 | align=right | 0 | align=right | 474 | align=right | 316 | align=right | 0 | align=right | 15.961° |- | align=right | 161 | align=right | 11833.084739465 | align=center | <math>C_{2}</math> | align=center | 0.000056447 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 149 | align=right | 0 | align=right | 0 | align=right | 477 | align=right | 318 | align=right | 0 | align=right | 15.810° |- | align=right | 162 | align=right | 11984.050335814 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 150 | align=right | 0 | align=right | 0 | align=right | 480 | align=right | 320 | align=right | 0 | align=right | 15.813° |- | align=right | 163 | align=right | 12136.013053220 | align=center | <math>C_{2}</math> | align=center | 0.000120798 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 151 | align=right | 0 | align=right | 0 | align=right | 483 | align=right | 322 | align=right | 0 | align=right | 15.675° |- | align=right | 164 | align=right | 12288.930105320 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 152 | align=right | 0 | align=right | 0 | align=right | 486 | align=right | 324 | align=right | 0 | align=right | 15.655° |- | align=right | 165 | align=right | 12442.804451373 | align=center | <math>C_{2}</math> | align=center | 0.000091119 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 153 | align=right | 0 | align=right | 0 | align=right | 489 | align=right | 326 | align=right | 0 | align=right | 15.651° |- | align=right | 166 | align=right | 12597.649071323 | align=center | <math>D_{2d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 16 | align=right | 146 | align=right | 4 | align=right | 0 | align=right | 492 | align=right | 328 | align=right | 0 | align=right | 15.607° |- | align=right | 167 | align=right | 12753.469429750 | align=center | <math>C_{2}</math> | align=center | 0.000097382 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 155 | align=right | 0 | align=right | 0 | align=right | 495 | align=right | 330 | align=right | 0 | align=right | 15.600° |- | align=right | 168 | align=right | 12910.212672268 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 156 | align=right | 0 | align=right | 0 | align=right | 498 | align=right | 332 | align=right | 0 | align=right | 15.655° |- | align=right | 169 | align=right | 13068.006451127 | align=center | <math>C_{s}</math> | align=center | 0.000068102 | align=right | 0 | align=right | 0 | align=right | 13 | align=right | 155 | align=right | 1 | align=right | 0 | align=right | 501 | align=right | 334 | align=right | 0 | align=right | 15.537° |- | align=right | 170 | align=right | 13226.681078541 | align=center | <math>D_{2d}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 158 | align=right | 0 | align=right | 0 | align=right | 504 | align=right | 336 | align=right | 0 | align=right | 15.569° |- | align=right | 171 | align=right | 13386.355930717 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 159 | align=right | 0 | align=right | 0 | align=right | 507 | align=right | 338 | align=right | 0 | align=right | 15.497° |- | align=right | 172 | align=right | 13547.018108787 | align=center | <math>C_{2v}</math> | align=center | 0.000547291 | align=right | 0 | align=right | 0 | align=right | 14 | align=right | 156 | align=right | 2 | align=right | 0 | align=right | 510 | align=right | 340 | align=right | 0 | align=right | 15.292° |- | align=right | 173 | align=right | 13708.635243034 | align=center | <math>C_{s}</math> | align=center | 0.000286544 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 161 | align=right | 0 | align=right | 0 | align=right | 513 | align=right | 342 | align=right | 0 | align=right | 15.225° |- | align=right | 174 | align=right | 13871.187092292 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 162 | align=right | 0 | align=right | 0 | align=right | 516 | align=right | 344 | align=right | 0 | align=right | 15.366° |- | align=right | 175 | align=right | 14034.781306929 | align=center | <math>C_{2}</math> | align=center | 0.000026686 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 163 | align=right | 0 | align=right | 0 | align=right | 519 | align=right | 346 | align=right | 0 | align=right | 15.252° |- | align=right | 176 | align=right | 14199.354775632 | align=center | <math>C_{1}</math> | align=center | 0.000283978 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 164 | align=right | 0 | align=right | 0 | align=right | 522 | align=right | 348 | align=right | 0 | align=right | 15.101° |- | align=right | 177 | align=right | 14364.837545298 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 165 | align=right | 0 | align=right | 0 | align=right | 525 | align=right | 350 | align=right | 0 | align=right | 15.269° |- | align=right | 178 | align=right | 14531.309552587 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 166 | align=right | 0 | align=right | 0 | align=right | 528 | align=right | 352 | align=right | 0 | align=right | 15.145° |- | align=right | 179 | align=right | 14698.754594220 | align=center | <math>C_{1}</math> | align=center | 0.000125113 | align=right | 0 | align=right | 0 | align=right | 13 | align=right | 165 | align=right | 1 | align=right | 0 | align=right | 531 | align=right | 354 | align=right | 0 | align=right | 14.968° |- | align=right | 180 | align=right | 14867.099927525 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 168 | align=right | 0 | align=right | 0 | align=right | 534 | align=right | 356 | align=right | 0 | align=right | 15.067° |- | align=right | 181 | align=right | 15036.467239769 | align=center | <math>C_{2}</math> | align=center | 0.000304193 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 169 | align=right | 0 | align=right | 0 | align=right | 537 | align=right | 358 | align=right | 0 | align=right | 15.002° |- | align=right | 182 | align=right | 15206.730610906 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 170 | align=right | 0 | align=right | 0 | align=right | 540 | align=right | 360 | align=right | 0 | align=right | 15.155° |- | align=right | 183 | align=right | 15378.166571028 | align=center | <math>C_{1}</math> | align=center | 0.000467899 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 171 | align=right | 0 | align=right | 0 | align=right | 543 | align=right | 362 | align=right | 0 | align=right | 14.747° |- | align=right | 184 | align=right | 15550.421450311 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 172 | align=right | 0 | align=right | 0 | align=right | 546 | align=right | 364 | align=right | 0 | align=right | 14.932° |- | align=right | 185 | align=right | 15723.720074072 | align=center | <math>C_{2}</math> | align=center | 0.000389762 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 173 | align=right | 0 | align=right | 0 | align=right | 549 | align=right | 366 | align=right | 0 | align=right | 14.775° |- | align=right | 186 | align=right | 15897.897437048 | align=center | <math>C_{1}</math> | align=center | 0.000389762 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 174 | align=right | 0 | align=right | 0 | align=right | 552 | align=right | 368 | align=right | 0 | align=right | 14.739° |- | align=right | 187 | align=right | 16072.975186320 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 175 | align=right | 0 | align=right | 0 | align=right | 555 | align=right | 370 | align=right | 0 | align=right | 14.848° |- | align=right | 188 | align=right | 16249.222678879 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 176 | align=right | 0 | align=right | 0 | align=right | 558 | align=right | 372 | align=right | 0 | align=right | 14.740° |- | align=right | 189 | align=right | 16426.371938862 | align=center | <math>C_{2}</math> | align=center | 0.000020732 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 177 | align=right | 0 | align=right | 0 | align=right | 561 | align=right | 374 | align=right | 0 | align=right | 14.671° |- | align=right | 190 | align=right | 16604.428338501 | align=center | <math>C_{3}</math> | align=center | 0.000586804 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 178 | align=right | 0 | align=right | 0 | align=right | 564 | align=right | 376 | align=right | 0 | align=right | 14.501° |- | align=right | 191 | align=right | 16783.452219362 | align=center | <math>C_{1}</math> | align=center | 0.001129202 | align=right | 0 | align=right | 0 | align=right | 13 | align=right | 177 | align=right | 1 | align=right | 0 | align=right | 567 | align=right | 378 | align=right | 0 | align=right | 14.195° |- | align=right | 192 | align=right | 16963.338386460 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 180 | align=right | 0 | align=right | 0 | align=right | 570 | align=right | 380 | align=right | 0 | align=right | 14.819° |- | align=right | 193 | align=right | 17144.564740880 | align=center | <math>C_{2}</math> | align=center | 0.000985192 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 181 | align=right | 0 | align=right | 0 | align=right | 573 | align=right | 382 | align=right | 0 | align=right | 14.144° |- | align=right | 194 | align=right | 17326.616136471 | align=center | <math>C_{1}</math> | align=center | 0.000322358 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 182 | align=right | 0 | align=right | 0 | align=right | 576 | align=right | 384 | align=right | 0 | align=right | 14.350° |- | align=right | 195 | align=right | 17509.489303930 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 183 | align=right | 0 | align=right | 0 | align=right | 579 | align=right | 386 | align=right | 0 | align=right | 14.375° |- | align=right | 196 | align=right | 17693.460548082 | align=center | <math>C_{2}</math> | align=center | 0.000315907 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 184 | align=right | 0 | align=right | 0 | align=right | 582 | align=right | 388 | align=right | 0 | align=right | 14.251° |- | align=right | 197 | align=right | 17878.340162571 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 185 | align=right | 0 | align=right | 0 | align=right | 585 | align=right | 390 | align=right | 0 | align=right | 14.147° |- | align=right | 198 | align=right | 18064.262177195 | align=center | <math>C_{2}</math> | align=center | 0.000011149 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 186 | align=right | 0 | align=right | 0 | align=right | 588 | align=right | 392 | align=right | 0 | align=right | 14.237° |- | align=right | 199 | align=right | 18251.082495640 | align=center | <math>C_{1}</math> | align=center | 0.000534779 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 187 | align=right | 0 | align=right | 0 | align=right | 591 | align=right | 394 | align=right | 0 | align=right | 14.153° |- | align=right | 200 | align=right | 18438.842717530 | align=center | <math>D_{2}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 188 | align=right | 0 | align=right | 0 | align=right | 594 | align=right | 396 | align=right | 0 | align=right | 14.222° |- | align=right | 201 | align=right | 18627.591226244 | align=center | <math>C_{1}</math> | align=center | 0.001048859 | align=right | 0 | align=right | 0 | align=right | 13 | align=right | 187 | align=right | 1 | align=right | 0 | align=right | 597 | align=right | 398 | align=right | 0 | align=right | 13.830° |- | align=right | 202 | align=right | 18817.204718262 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 190 | align=right | 0 | align=right | 0 | align=right | 600 | align=right | 400 | align=right | 0 | align=right | 14.189° |- | align=right | 203 | align=right | 19007.981204580 | align=center | <math>C_{s}</math> | align=center | 0.000600343 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 191 | align=right | 0 | align=right | 0 | align=right | 603 | align=right | 402 | align=right | 0 | align=right | 13.977° |- | align=right | 204 | align=right | 19199.540775603 | align=center | <math>T_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 192 | align=right | 0 | align=right | 0 | align=right | 606 | align=right | 404 | align=right | 0 | align=right | 14.291° |- | align=right | 212 | align=right | 20768.053085964 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 200 | align=right | 0 | align=right | 0 | align=right | 630 | align=right | 420 | align=right | 0 | align=right | 14.118° |- | align=right | 214 | align=right | 21169.910410375 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 202 | align=right | 0 | align=right | 0 | align=right | 636 | align=right | 424 | align=right | 0 | align=right | 13.771° |- | align=right | 216 | align=right | 21575.596377869 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 204 | align=right | 0 | align=right | 0 | align=right | 642 | align=right | 428 | align=right | 0 | align=right | 13.735° |- | align=right | 217 | align=right | 21779.856080418 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 205 | align=right | 0 | align=right | 0 | align=right | 645 | align=right | 430 | align=right | 0 | align=right | 13.902° |- | align=right | 232 | align=right | 24961.252318934 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 220 | align=right | 0 | align=right | 0 | align=right | 690 | align=right | 460 | align=right | 0 | align=right | 13.260° |- | align=right | 255 | align=right | 30264.424251281 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 243 | align=right | 0 | align=right | 0 | align=right | 759 | align=right | 506 | align=right | 0 | align=right | 12.565° |- | align=right | 256 | align=right | 30506.687515847 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 244 | align=right | 0 | align=right | 0 | align=right | 762 | align=right | 508 | align=right | 0 | align=right | 12.572° |- | align=right | 257 | align=right | 30749.941417346 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 245 | align=right | 0 | align=right | 0 | align=right | 765 | align=right | 510 | align=right | 0 | align=right | 12.672° |- | align=right | 272 | align=right | 34515.193292681 | align=center | <math>I_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 260 | align=right | 0 | align=right | 0 | align=right | 810 | align=right | 540 | align=right | 0 | align=right | 12.335° |- | align=right | 282 | align=right | 37147.294418462 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 270 | align=right | 0 | align=right | 0 | align=right | 840 | align=right | 560 | align=right | 0 | align=right | 12.166° |- | align=right | 292 | align=right | 39877.008012909 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 280 | align=right | 0 | align=right | 0 | align=right | 870 | align=right | 580 | align=right | 0 | align=right | 11.857° |- | align=right | 306 | align=right | 43862.569780797 | align=center | <math>T_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 294 | align=right | 0 | align=right | 0 | align=right | 912 | align=right | 608 | align=right | 0 | align=right | 11.628° |- | align=right | 312 | align=right | 45629.313804002 | align=center | <math>C_{2}</math> | align=center | 0.000306163 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 300 | align=right | 0 | align=right | 0 | align=right | 930 | align=right | 620 | align=right | 0 | align=right | 11.299° |- | align=right | 315 | align=right | 46525.825643432 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 303 | align=right | 0 | align=right | 0 | align=right | 939 | align=right | 626 | align=right | 0 | align=right | 11.337° |- | align=right | 317 | align=right | 47128.310344520 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 305 | align=right | 0 | align=right | 0 | align=right | 945 | align=right | 630 | align=right | 0 | align=right | 11.423° |- | align=right | 318 | align=right | 47431.056020043 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 306 | align=right | 0 | align=right | 0 | align=right | 948 | align=right | 632 | align=right | 0 | align=right | 11.219° |- | align=right | 334 | align=right | 52407.728127822 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 322 | align=right | 0 | align=right | 0 | align=right | 996 | align=right | 664 | align=right | 0 | align=right | 11.058° |- | align=right | 348 | align=right | 56967.472454334 | align=center | <math>T_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 336 | align=right | 0 | align=right | 0 | align=right | 1038 | align=right | 692 | align=right | 0 | align=right | 10.721° |- | align=right | 357 | align=right | 59999.922939598 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 345 | align=right | 0 | align=right | 0 | align=right | 1065 | align=right | 710 | align=right | 0 | align=right | 10.728° |- | align=right | 358 | align=right | 60341.830924588 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 346 | align=right | 0 | align=right | 0 | align=right | 1068 | align=right | 712 | align=right | 0 | align=right | 10.647° |- | align=right | 372 | align=right | 65230.027122557 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 360 | align=right | 0 | align=right | 0 | align=right | 1110 | align=right | 740 | align=right | 0 | align=right | 10.531° |- | align=right | 382 | align=right | 68839.426839215 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 370 | align=right | 0 | align=right | 0 | align=right | 1140 | align=right | 760 | align=right | 0 | align=right | 10.379° |- | align=right | 390 | align=right | 71797.035335953 | align=center | <math>T_{h}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 378 | align=right | 0 | align=right | 0 | align=right | 1164 | align=right | 776 | align=right | 0 | align=right | 10.222° |- | align=right | 392 | align=right | 72546.258370889 | align=center | <math>I</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 380 | align=right | 0 | align=right | 0 | align=right | 1170 | align=right | 780 | align=right | 0 | align=right | 10.278° |- | align=right | 400 | align=right | 75582.448512213 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 388 | align=right | 0 | align=right | 0 | align=right | 1194 | align=right | 796 | align=right | 0 | align=right | 10.068° |- | align=right | 402 | align=right | 76351.192432673 | align=center | <math>D_{5}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 12 | align=right | 390 | align=right | 0 | align=right | 0 | align=right | 1200 | align=right | 800 | align=right | 0 | align=right | 10.099° |- | align=right | 432 | align=right | 88353.709681956 | align=center | <math>D_{3}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 396 | align=right | 12 | align=right | 0 | align=right | 1290 | align=right | 860 | align=right | 0 | align=right | 9.556° |- | align=right | 448 | align=right | 95115.546986209 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 412 | align=right | 12 | align=right | 0 | align=right | 1338 | align=right | 892 | align=right | 0 | align=right | 9.322° |- | align=right | 460 | align=right | 100351.763108673 | align=center | <math>T</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 424 | align=right | 12 | align=right | 0 | align=right | 1374 | align=right | 916 | align=right | 0 | align=right | 9.297° |- | align=right | 468 | align=right | 103920.871715127 | align=center | <math>S_{6}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 432 | align=right | 12 | align=right | 0 | align=right | 1398 | align=right | 932 | align=right | 0 | align=right | 9.120° |- | align=right | 470 | align=right | 104822.886324279 | align=center | <math>S_{6}</math> | align=center | 0 | align=right | 0 | align=right | 0 | align=right | 24 | align=right | 434 | align=right | 12 | align=right | 0 | align=right | 1404 | align=right | 936 | align=right | 0 | align=right | 9.059° |} ==脚注== <references/> ==参考文献== * {{cite journal|first1=L.L. |last1=Whyte|title=Unique arrangements of points on a sphere | journal = Amer. Math. Monthly |year=1952 |volume=59 | number=9 | pages=606–611|doi=10.2307/2306764}} * {{cite journal|first1=Harvey |last1=Cohn|year=1956|title= Stability configurations of electrons on a sphere|journal=Math. Comput. | pages=117–120 | doi=10.1090/S0025-5718-1956-0081133-0 }} * {{cite journal|first1=Michael | last1=Goldberg | title=Stability configurations of electrons on a sphere|journal=Math. Comp. | year=1969 | volume=23 | pages=785–786 | doi=10.1090/S0025-5718-69-99642-2 }} * {{cite journal|first1=T. |last1=Erber|first2=G. M. |last2=Hockney | title= equilibrium configurations of N equal charges on a sphere|year=1991|journal=J. Phys. A: Math. Gen. |volume=24 | pages=L1369|doi=10.1088/0305-4470/24/23/008|number=23|bibcode=1991JPhA...24L1369E}} * {{cite journal|first1=J. R. |last1=Morris|first2=D. M. |last2=Deaven|first3=K. M. | last3=Ho|title=Genetic-algorithm energy minimization for point charges on a sphere | journal = Phys. Rev. B |volume=53 | year=1996|pages=R1740 |doi=10.1103/PhysRevB.53.R1740|bibcode=1996PhRvB..53.1740M}} * {{cite journal|first1=T.|last1= Erber |first2= G. M.|last2= Hockney|title=Complex Systems: Equilibrium Configurations of <math>N</math> Equal Charges on a Sphere <math>(2\leq N\leq 112)</math>|journal= Advances in Chemical Physics|volume= 98|pages=495–594|year= 1997 |doi=10.1002/9780470141571.ch5}}. * {{cite journal|first1=E. L. |last1=Altschuler | first2=T. J. |last2=Williams|first3=E. R. |last3=Ratner |first4=R. |last4=Tipton |first5=R. |last5=Stong |first6=F. |last6=Dowla | first7=F. | last7=Wooten|title=Possible global minimum lattice configurations for Thomson's problem of charges on a sphere|year=1997|journal = Phys. Rev. Lett. |volume=78 | pages=2681 |doi=10.1103/PhysRevLett.78.2681|bibcode=1997PhRvL..78.2681A }} * {{cite journal|first1=M. |last1=Bowick|first2=A. | last2=Cacciuto|first3=D. R. | last3=Nelson|first4=A. | last4=Travesset |title=Crystalline order on a sphere and the generalized Thomson Problem|journal=Phys. Rev. Lett. | volume= 89 |year=2002 |pages=249902 | doi=10.1103/PhysRevLett.89.185502| issue=18|arxiv=cond-mat/0206144|bibcode=2002PhRvL..89r5502B}} * {{cite journal|first1=P. D.|last1= Dragnev|first2= D. A.|last2= Legg|first3= D. W. |last3= Townsend |title=Discrete logarithmic energy on the sphere|journal=Pacific J. Math. |volume=207 |year=2002|number= 2|pages= 345–358|doi=10.2140/pjm.2002.207.345}}. * {{cite journal|first1=A. | last1=Katanforoush |first2=M. |last2=Shahshahani | title=Distributing points on the sphere. I|year=2003 | journal=Exper. Math. |volume=12|number=2| pages=199–209 |doi=10.1080/10586458.2003.10504492}} * {{cite journal|first1=David J. | last1=Wales |first2=Sidika|last2=Ulker| title=Structure and dynamics of spherical crystals characterized for the Thomson problem | journal=Phys. Rev. B | volume=74 | year=2006|number=21|pages=212101 |doi=10.1103/PhysRevB.74.212101|bibcode=2006PhRvB..74u2101W}} Configurations reprinted in {{cite web | first1=D. J. | last1=Wales | first2=S. | last2=Ulker | url=http://www-wales.ch.cam.ac.uk/~wales/CCD/Thomson/table.html|title=The Cambridge cluster database|accessdate=2018-06-14}} * {{cite journal|first1=A. |last1=Slosar|first2=R. | last2=Podgornik|title= On the connected-charges Thomson problem|journal=Europhys. Lett.|year=2006|volume=75|number=4|pages=631|doi=10.1209/epl/i2006-10146-1|arxiv=cond-mat/0606765|bibcode=2006EL.....75..631S}} * {{cite journal|first1=Henry |last1= Cohn |first2= Abhinav|last2= Kumar |title=Universally optimal distribution of points on spheres|journal=J. Amer. Math. Soc. |volume= 20 |year=2007|number= 1|pages=99–148 |doi=10.1090/S0894-0347-06-00546-7|arxiv=math/0607446|bibcode=2007JAMS...20...99C}} * {{cite journal|first1=D. J. | last1=Wales|first2=H. | last2=McKay | first3=E. L. | last3=Altschuler| title=Defect motifs for spherical topologies| journal=Phys. Rev. B|year=2009 | volume=79 | pages=224115 | issue=22 | doi=10.1103/PhysRevB.79.224115| bibcode=2009PhRvB..79v4115W}}. Configurations reproduced in {{cite web|first1=D. J. | last1=Wales | first2=S. | last2=Ulker | url=http://www-wales.ch.cam.ac.uk/~wales/CCD/Thomson2/table.html|title=The Cambridge cluster database|accessdate=2018-06-14}} * {{cite journal|first1=W. J. M. |last1=Ridgway |first2=A. F. | last2=Cheviakov|doi=10.1016/j.cpc.2018.03.029| year=2018|journal=Comp. Phys. Commun. | title=An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere|volume=233|pages=84-109}} * {{cite web|first1=Cris|last1= Cecka|first2= Mark J. |last2= Bowick|first3= Alan A.|last3= Middleton|url= http://thomson.phy.syr.edu/|title= Thomson Problem @ S.U.|accessdate=2009-11-24}} {{DEFAULTSORT:とむそんもんたい}} [[Category:離散幾何学]] [[Category:多面体]] [[Category:数学に関する記事]] [[Category:物理学のエポニム]]
このページで使用されているテンプレート:
テンプレート:Cite arXiv
(
ソースを閲覧
)
テンプレート:Cite journal
(
ソースを閲覧
)
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:MR
(
ソースを閲覧
)
テンプレート:Quote box
(
ソースを閲覧
)
テンプレート:Zbl
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
トムソン問題
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報