ブラック・モデルのソースを表示
←
ブラック・モデル
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''ブラック・モデル'''({{lang-en|Black model}}、場合により'''ブラック 76 モデル'''とも言われる)は、[[ブラック-ショールズ方程式#ブラック-ショールズモデル|ブラック・ショールズ・オプション価格モデル]]の発展モデルである。 同モデルは、主として[[債券]][[オプション]]、[[金利]]キャップ、金利フロア、[[スワップション]]の価格評価に応用される。同モデルは、[[フィッシャー・ブラック]]の 1976 年の論文で最初に提示された。 ブラック・モデルは、対数正規先渡モデル、または [[LIBOR]] 市場モデルと呼ばれる一連のモデルに一般化することができる。 == ブラックの公式 == ブラックの公式は、[[株式]]オプションの評価式であるブラック・ショールズ式と類似しているが、原資産のスポット価格が先渡価格 ''F'' に置き換わっている点が異なる。 時点 ''T'' で一単位の通貨を支払う割引債の時点 ''t'' における価格を ''P''(''t'', ''T'') とするとき、原資産の行使価格を ''K''、満期までの年数を ''T'' とするヨーロッパ型コール・オプションに関するブラックの公式は、以下のとおりである。 : <math> c = P \left( 0, T \right) \left[ FN \left( d_1 \right) - KN \left( d_2 \right) \right]</math> また、プット価格は、以下のとおりである。 : <math> p = P \left( 0, T \right) \left[ KN \left( -d_2 \right) - FN \left( -d_1 \right) \right]</math> ここで、 : <math> d_1 = \frac{\log \frac{F}{K} + \frac{\sigma^2}{2}T}{\sigma \sqrt{T}} </math> : <math> d_2 = \frac{\log \frac{F}{K} - \frac{\sigma^2}{2}T}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T} </math> である。 == 計算前提および導出過程 == 同モデルにおいて、価格公式の導出は、ブラック・ショールズ・モデルの場合と殆ど同一である。ただし、[[スポット価格]]が対数正規過程([[幾何ブラウン運動]])に従う必要はなく、オプションの満期における先渡価格が対数正規分布に従いさえすれば良い。これにより、最終式はスポット価格が先渡価格に置き換えられる点を除き、モデル導出過程は同一となる。このモデルは、金利が確率的に変動し不確実なときも、近似式としてではなく厳密解として成り立ち、先渡価格は、将来のスポット価格の期待値(割り引かない)に一致する。従って、ブラック・モデルは、形式的にはブラック・ショールズ・モデルに極めて類似しているが、極めて広範囲な適応性を有する。 == 関連項目 == * [[ブラック-ショールズ方程式]] == 参考文献 == {{脚注ヘルプ}} * Black, Fischer (1976). The pricing of commodity contracts, Journal of Financial Economics, 3, 167-179. * ジョン・ハル、三菱証券商品開発本部訳、フィナンシャルエンジニアリング〈第5版〉─ デリバティブ取引とリスク管理の総体系、2005年3月31日、社団法人金融財政事情研究会、ISBN 4-322-10642-0 {{DEFAULTSORT:ふらつくもてる}} [[Category:ファイナンシャル・モデル]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Lang-en
(
ソースを閲覧
)
テンプレート:脚注ヘルプ
(
ソースを閲覧
)
ブラック・モデル
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報