ベルヌーイ試行のソースを表示
←
ベルヌーイ試行
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[File:Bernoulli_trial_progression.svg|thumb|400px|''n'' 回のベルヌーイ試行で確率 ''p'' の事象が1度も起らない確率 ''P'' のグラフ。横軸は ''np'' 。 <br />'''青い線''': 6面のサイコロを6回投げて、6(または任意の数字)が1度も出ない確率は33.5%である。''n'' 回の試行で確率 1/''n'' の事象が発生しない確率が、''n'' が増加するにつれて0に近づいて行く様子が確認できる。 <br />'''灰色の線''': [[ヤッツィー]](5個のサイコロを投げて全て同じ目になること)になる確率を50%にするためには、0.693 × 1296 ~ 898 回試行する必要がある。 <br />'''緑色の線''': ジョーカーを除いたトランプの山からカードを1枚引いて山に戻す試行を100回(= 1.92 × 52)繰り返したとき、エースを少なくとも1回引く確率は85.7%である。]] [[確率論]]や[[統計学]]において、'''ベルヌーイ試行'''(ベルヌーイしこう、{{lang-en|Bernoulli trial}})または'''二項試行'''(にこうしこう、{{lang-en|binomial trial}})とは、取り得る[[結果 (確率論)|結果]]が「成功」「失敗」の2つのみであり、各試行において成功の[[確率]]が同じであるランダム[[試行 (確率論)|試行]]である<ref>{{cite encyclopedia | last = Papoulis | first = A. | contribution = Bernoulli Trials | title = Probability, Random Variables, and Stochastic Processes | edition = 2nd | location = New York | publisher = [[McGraw-Hill]] | pages = 57–63 | year = 1984}}</ref>。この名前は、17世紀のスイスの数学者である[[ヤコブ・ベルヌーイ]]にちなんで名付けられた。ベルヌーイは、1713年の著書『{{仮リンク|推測法|en|Ars Conjectandi}}』(''Ars Conjectandi'')でこの試行を分析した<ref>James Victor Uspensky: ''Introduction to Mathematical Probability'', McGraw-Hill, New York 1937, page 45</ref>。 ベルヌーイ試行の数学的形式化を[[ベルヌーイ過程]]という。本項目ではベルヌーイ試行の基本的な概念を説明する。より高度な処理については[[ベルヌーイ過程]]を参照のこと。 ベルヌーイ試行の結果は2つしかないため、以下のような「はい」か「いいえ」かで答えられる質問として組み立てることができる。 *切った[[トランプ]]の山の一番上のカードはエースであるか? *[[サイコロ]]を振ったときの出目は6であるか? <!-- *新生児の性別は女か? ({{仮リンク|人の性別の比率|en|human sex ratio}}を参照) ←英語版はこの例を挙げているが、そうでない性別も低確率ながらあり得るので採用しない。 --> すなわち、結果の「成功」「失敗」とは単なるラベルであり、文字通りの意味として解釈されるべきではない。この場合の「成功」という用語は、道徳的な判断ではなく、結果が指定された条件に合致するかどうかを意味する。 より一般的には、特定の[[事象 (確率論)|事象]](結果の集合)についての任意の[[確率空間]]が与えられたとき、その事象が発生したかどうか(事象または{{仮リンク|余事象|en|Complementary event}})に対応するベルヌーイ試行を定義できる。ベルヌーイ定義の例として、以下のものが挙げられる。 *[[コイントス]]をし、表が出たときを「成功」、裏が出たときを「失敗」とした場合。[[公正なコイン]]を使用した場合、成功の確率は1/2である。この例の場合、取り得る結果は表・裏の2通りしかない。 *[[サイコロ]]を振って、出た目が6のときを「成功」、それ以外の目が出たときを「失敗」とした場合。公正なサイコロを使用した場合、成功の確率は1/6である。この例の場合、取り得る結果は6通りで、「成功」の事象(6が出る)は1通り、余事象(6以外が出る)は5通りである。 *[[世論調査]]を実施する際に、有権者をランダムに選択して、その有権者が今後の国民投票で「はい」と投票するかを確認する場合。 ==定義== 取り得る結果が正確に2つである試行を繰り返し実施し、各試行が[[独立 (確率論)|独立]]している場合、この試行をベルヌーイ試行という。結果のうちの1つを「成功」、それ以外の結果を「失敗」と呼ぶ。ここで、1回のベルヌーイ試行で成功する確率を <math>p</math> 、失敗する確率を <math>q</math> とする。このとき、失敗は成功の余事象であるため、成功の確率と失敗の確率を合計すると[[1]]になる。「成功」と「失敗」は{{仮リンク|相互排他性|en|mutually exclusive|label=相互排他的}}かつ{{仮リンク|網羅的事象|en|Collectively exhaustive events|label=網羅的}}([[MECE]])である。従って、次式の関係がある。 :<math>p = 1 - q, \quad \quad q = 1 - p, \quad \quad p + q = 1</math> これらは[[オッズ]]の観点で記述することもできる。成功の確率 ''p'' と失敗の確率 ''q'' を与えたとき、成功のオッズ <math>o_f</math> (''odds for'')は <math>p:q</math> 、失敗のオッズ <math>o_a</math> (''odds against'')は <math>q:p</math> である。次式のようにこれを割り算と解釈すると、数値として表現できる。 :<math> \begin{align} o_f &= p/q = p/(1-p) = (1-q)/q\\ o_a &= q/p = (1-p)/p = q/(1-q) \end{align} </math> これらは互いに[[逆数]]であり、掛けると1になる。 :<math>o_f = 1/o_a, \quad o_a = 1/o_f, \quad o_f \cdot o_a = 1</math> あるベルヌーイ試行が、有限回の同様に確からしい結果における事象を表しており、成功が ''S'' 回、失敗が ''F'' 回であった場合、成功のオッズは <math>S:F</math> 、失敗のオッズは <math>F:S</math> である。これにより、確率とオッズについて次の式が得られる。 :<math> \begin{align} p &= S/(S+F)\\ q &= F/(S+F)\\ o_f &= S/F\\ o_a &= F/S \end{align} </math> ここで、確率ではなく結果の数を除算することでオッズを計算しているが、これらの比率は両方の項に同じ定数係数を乗算することのみが違うため、比率は同じである。 ベルヌーイ試行を記述する[[確率変数]]は、多くの場合、1 =「成功」、0 =「失敗」という規則を使用してエンコードされる。 二項試行は、ベルヌーイ試行に密接に関連している。[[独立 (確率論)|独立]]したベルヌーイ試行の回数を <math>n</math> 、それぞれの成功の確率を <math>p</math> とし、成功数をカウントする。二項試行に対応する確率変数は <math>B(n,p)</math> で示され、[[二項分布]]を持つ。試行 <math>B(n,p)</math> において成功が <math>k</math> 回であったときの確率は次式で与えられる。 :<math>P(k)={n \choose k} p^k q^{n-k}</math> ここで、 <math>{n \choose k}</math> は[[二項係数]]である。 また、ベルヌーイ試行は、[[負の二項分布]] (一連の繰り返されるベルヌーイ試行において、指定された数だけ失敗するまでの成功数の分布)などの様々な確率分布につながる。 複数のベルヌーイ試行が実行され、それぞれに別の成功の確率がある場合、これを{{仮リンク|ポアソン試行|en|Poisson sampling}}という<ref>[[Rajeev Motwani]] and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York (NY), 1995, p.67-68</ref>([[ポアソン二項分布]]も参照)。 ==例:コイントスの場合== 公正なコインを4回投げて、表が出る回数が2回となる確率を考える。 ===解=== この試行では、表が出ること「成功」、裏が出ることを「失敗」と定義する。コインは公正であると想定されているため、成功の確率 ''p'' は <math>p = \tfrac{1}{2}</math> である。従って、失敗の確率 <math>q</math> は次式で与えられる。 :<math>q = 1 - p = 1 - \tfrac{1}{2} = \tfrac{1}{2}</math> 上記の式を使用して、4回のコイントスのうち表が出る回数が2回となる確率は、次式のように求められる。 :<math>\begin{align} P(2) &= {4 \choose 2} p^2 q^2 \\ &= 6 \times (\tfrac{1}{2})^2 \times (\tfrac{1}{2})^2 \\ &= \dfrac {3}{8} \end{align}</math> ==関連項目== *[[ベルヌーイ過程]] *{{仮リンク|ベルヌーイスキーム|en|Bernoulli scheme}} *{{仮リンク|ベルヌーイサンプリング|en|Bernoulli sampling}} *[[ベルヌーイ分布]] *[[二項分布]] *[[二項係数]] *[[ウィルソンの信頼区間]] *{{仮リンク|ポアソン試行|en|Poisson sampling}} *{{仮リンク|サンプリング設計|en|Sampling design}} *[[コイントス]] *[[ヤコブ・ベルヌーイ]] *[[フィッシャーの正確確率検定]] *[[ベルヌーイ多項式]] *[[ベルヌーイ数]] ==脚注== {{reflist}} ==外部リンク== {{Commonscat}} *{{SpringerEOM|title=Bernoulli trials|urlname=Bernoulli_trials}} *{{cite web|url=http://www.math.uah.edu/stat/applets/BinomialTimelineExperiment.html|title=Simulation of n Bernoulli trials|publisher=math.uah.edu|accessdate=2014-01-21}} {{確率論}} {{DEFAULTSORT:へるぬいしこう}} [[Category:ギャンブルの数学]] [[Category:試行 (確率論)]] [[Category:ヤコブ・ベルヌーイ]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Cite encyclopedia
(
ソースを閲覧
)
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:Commonscat
(
ソースを閲覧
)
テンプレート:Lang-en
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:SpringerEOM
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
テンプレート:確率論
(
ソースを閲覧
)
ベルヌーイ試行
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報