二重三角十二・十二面体のソースを表示
←
二重三角十二・十二面体
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[Image:Ditrigonal dodecadodecahedron.png|240px|right|二重三角十二・十二面体]] '''二重三角十二・十二面体'''(''Ditrigonal Dodecadodecahedron'')とは、[[一様多面体]]の一種で、[[正十二面体]]の辺を深く削り6つの[[二等辺三角形]]にしたような形をしている。各頂点には[[星型五角形]]と[[正五角形]]が3枚ずつ交差して集まる。またこの立体は(非凸なものを含む場合の)[[準正多面体]]でもある。'''二重三角十二面体'''(''Ditrigonal dodecahedron'')と呼ばれることもあるが<ref>マグナス・J・ウェニンガー(1974/4/26)『Polyhedron Models』Cambridge University Press</ref>、誤りであるとされている<ref>[http://www.steelpillow.com/polyhedra/Wenninger/Wenninger.html M. Wenninger, Polyhedron Models, Errata]</ref>。 == 性質 == * 構成面: 星型五角形 12枚、正五角形 12枚 * 辺: 60 * 頂点数: 20 * 頂点形状: (5, 5/3)<sup>3</sup><br />[[Image:ditrigonal dodecadodecahedron vertfig.png|200px|二重三角十二・十二面体の頂点形状]] * [[ワイソフ記号]]: 3 | 5 5/3 * [[枠 (多面体)|枠]]: 正十二面体 * [[双対多面体|双対]]: {{Interlang|en|Medial triambic icosahedron}}(外観は[[星型多面体#正二十面体の星型|正二十面体の星型]]の'''De2f2''')<br />[[Image:DU41_medial_triambic_icosahedron.png|200px|Medial triambic icosahedron]] * 外接球半径: 一辺を2とすると <math>\sqrt3</math> == 同じ枠を持つ立体 == * [[正十二面体]] * [[大星型十二面体]] * [[小二重三角二十・十二面体]] * [[大二重三角二十・十二面体]] * 二重三角十二・十二面体 * 5個の[[正六面体]]による[[複合多面体]] * 5個の[[正四面体]]による複合多面体 * 10個の正四面体による複合多面体 == 出典 == <references /> {{多面体}} {{Polyhedron-stub}} {{デフォルトソート:にしゆうさんかくしゆうにしゆうにめんたい}} [[Category:一様多面体]] [[Category:準正多面体]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Interlang
(
ソースを閲覧
)
テンプレート:Polyhedron-stub
(
ソースを閲覧
)
テンプレート:多面体
(
ソースを閲覧
)
二重三角十二・十二面体
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報