境界 (位相空間論)のソースを表示
←
境界 (位相空間論)
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{混同|境界({{lang|en|boundary}})|x1=[[多様体]]の|link1=多様体#位相多様体}} [[Image:Runge theorem.svg|right|thumb|紺色の部分が、水色で表された集合の境界となっている。]] [[位相空間論|一般位相]]において[[位相空間]] ''X'' の部分集合 ''S'' の'''境界'''(きょうかい、{{lang-en|''boundary'', ''frontier''}})とは、''S'' の中からも外からも近づくことのできる点の全体の成す ''X'' の部分集合のことである。もうすこし形式的に言えば、''S'' の触点([[閉包 (位相空間論)|閉包]]に属する点)のうち、''S'' の内点([[開核]]に属する点)ではないものの全体の成す集合のことである。''S'' の境界に属する点のことを、''S'' の'''境界点'''{{lang|en|(''boundary point'')}} と呼ぶ。''S'' が'''境界を持たない''' {{lang|en|(''boundaryless'')}} とは、''S'' が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも ''S'' に属さないことをいう<ref>原文ではここで「距離の概念からくる[[非有界集合]] (unbounded set) と区別して」という補足を付けているが、日本語では混乱はあるまい。</ref>。集合 ''S'' の境界を表すのに、bd(''S''), fr(''S''), ∂''S''<ref name="notation">最初のふたつはそれぞれ '''b'''oun'''d'''ary, '''fr'''ontier の省略形からきている(が、省略の仕方は変えてもいいし省略しなくてもいい)。これ以外の記法としては、松坂では '''f'''rontier の頭文字を右肩に載せる ''S''<sup>''f''</sup> を用いている。内部 ('''int'''erior) = 開核 ('''o'''pen-kernel) や触集合 ('''ad'''herence) = 閉包 ('''cl'''osure) あるいは補集合 ('''comp'''lement) などについても同様の記法を使う。閉集合については上付きバーで表すこともあるが、日本の教育数学方言では補集合にバーを使う傾向があり紛らわしい。</ref> のような記法がしばしば用いられる。代数的位相幾何学における境界 {{lang|en|(boundary)}} の概念との区別のため、ここでいう境界に対応する語として "boundary" の代わりに "frontier" を用いることがある(たとえば松坂『集合・位相入門』<ref>原文では Willard, ''General Topology'' が挙げられている</ref>)。 集合 ''S'' の境界の[[連結成分]]のことを、''S'' の'''境界成分''' {{lang|en|(''boundary component'')}} という。 == よくある定義 == 位相空間 ''X'' の部分集合 ''S'' の境界について、複数の(しかし互いに同値な)定義の仕方がある。よく用いられるものとしては<ref name="notation" /> * ''S'' の閉包から ''S'' の開核を除いたもの<div style="margin:1ex auto 1ex 2em"><math>\partial S := \bar{S} \setminus S^{\circ} = \operatorname{Cl}(S) \setminus \operatorname{Int}(S) = S^a \setminus S^i.</math></div> * ''S'' の閉包と ''S'' の[[補集合]]の閉包との共通部分<div style="margin:1ex auto 1ex 2em"><math>\partial S := \bar{S} \cap \overline{S^{\scriptscriptstyle\complement}} = \operatorname{Cl}(S) \cap \operatorname{Cl}(S^{\scriptscriptstyle\complement}) = S^a \cap (S^{\scriptscriptstyle\complement})^a.</math></div> * ''X'' の点で ''S'' の内部にも外部にも属さない点<div style="margin:1ex auto 1ex 2em"><math>\partial S := (S^{\circ}\cup (S^{\scriptscriptstyle\complement})^{\circ})^{\scriptscriptstyle\complement} = (\operatorname{Int}(S) \cup \operatorname{Int}(S^{\scriptscriptstyle\complement}))^{\scriptscriptstyle\complement} = (S^i\cup (S^{\scriptscriptstyle\complement})^i)^{\scriptscriptstyle\complement}</math></div>ここで外部とは補集合の内部のことである。 * ''X'' の点 ''p'' で、''p'' の任意の[[近傍]]が ''S'' に属する点と属さない点をともに少なくともひとつ含むようなもの全体の成す集合。 などである。 == 例 == [[File:Boundary mandelbrot set.png|250px|right|thumb|[[マンデルブロ集合]]の境界]] 実数直線 '''R''' に通常の位相(つまり、[[開区間]]を開基とする位相)を考えると、たとえば * ∂(0,5) = ∂[0,5) = ∂(0,5] = ∂[0,5] = {0,5} * ∂∅ = ∅ * ∂'''Q''' = '''R''' * ∂('''Q''' ∩ [0,1]) = [0,1] などが成立する。最後のふたつの例は、内点を持たない[[稠密集合]]の境界はその集合の閉包に一致するという一般的な事実を説明するものになっている。 有理数全体の集合に通常の位相('''R''' の[[相対位相|部分位相空間としての位相]])を考えた位相空間の中では、''a'' が無理数であるときの区間 (−∞, ''a'') の境界は空集合である。 集合の境界というのは位相的な概念であり、集合に入れる位相を変えれば(同じ集合であっても)何が境界であるかが変わってくる。例えば、通常の位相を持つ '''R'''<sup>2</sup> における閉円板 Ω = {(''x'', ''y'') | ''x''<sup>2</sup> + ''y''<sup>2</sup> ≤ 1} の境界は、この円板を囲む円周 ∂Ω = {(''x'', ''y'') | ''x''<sup>2</sup> + ''y''<sup>2</sup> = 1} である。もしここで、この円板を通常の位相をもつ '''R'''<sup>3</sup> の部分集合 Ω = {(''x'', ''y'', 0) | ''x''<sup>2</sup> + ''y''<sup>2</sup> ≤ 1} と見るならば、この円板の境界は円板自身 ∂Ω = Ω であり、また円板それ自身を(相対位相に関する)位相空間と見れば、その境界は空となる。 == 性質 == * 集合の境界は[[閉集合|閉]]である。 * 集合の境界は補集合の境界に等しい: ∂''S'' = ∂(''S''<sup>''c''</sup>)。 これらのことから以下のようなことが従う。 * ''p'' が集合の境界点となる必要十分条件は、''p'' の任意の近傍が少なくとも一つその集合の点を含みかつ少なくとも一つその集合の補集合の点を含むことである。 * 集合が閉であることの必要十分条件は、その集合が自身の境界を包含することであり、[[開集合|開]]であることの必要十分条件はその集合が自身の境界と交わりを持たないことである。 * 集合の閉包はその集合自身とその境界との和に等しい:Cl(''S'') = ''S'' ∪ ∂''S''。 * 集合の境界が空であることの必要十分条件は、その集合が開かつ閉 (clopen) であることである。 * '''R'''<sup>''n''</sup> における任意の閉集合は、適当な集合の境界になっている。 <!--::::[[Image:AccumulationAndBoundaryPointsOfS.PNG]] :''[[Concept]]ual [[Venn diagram]] showing the relationships among different points of a subset S of '''R'''<sup>n</sup>. A = set of [[accumulation point]]s of S, B = set of '''boundary points''' of S, area shaded green = set of [[interior points]] of S, area shaded yellow = set of [[isolated point]]s of S, areas shaded black = empty sets. -->[[File:Topological boundary.svg|250px|thumb|right|''A' は緑色の部分を含み赤色の部分を含まない。]] ''S'' の各点は内点であるか境界点であるかのいずれかである。また、''S'' の各点は集積点であるか[[孤立点]]であるかのいずれかである。同様に、''S'' の各境界点は集積点であるか孤立点であるかのいずれかである。'''R'''<sup>''n''</sup>の部分集合の孤立点は常に境界点である。 == 境界の境界 == 如何なる集合 ''S'' についても ∂''S'' ⊇ ∂∂''S'' が成立する。ここで等号は ''S'' の境界が内点を持たないとき、かつそのときに限り成り立つ。これは ''S'' が開または閉であるときにも正しい。任意の集合の境界が閉となることから、∂∂''S'' = ∂∂∂''S'' は如何なる集合 ''S'' についても成り立つ。したがって、境界をとる操作は弱い意味で[[冪等]]である。特に、集合の境界の境界はふつう空でない。 [[多様体]]や[[単体 (数学)|単体]]および[[単体的複体]]の境界に関する議論では、しばしば境界の境界はつねに空であるという主張を目にすることもあるだろう。実際、[[特異ホモロジー]]の構成はこの事実に決定的に基づいている。この明らかな不整合に対する説明としては、この項目の主題となる位相的な境界と、多様体や単体的複体の境界とは少し異なる概念であるからということになる。例えば閉円板をそれ自身位相空間とみなしたときの位相的な境界は空集合だが、円板自身を多様体と見なしたときの境界は円板自身の円周である。 == 関連項目 == * [[多様体]] - 境界付き多様体 == 参考文献 == *{{cite book | author = J. R. Munkres | title = Topology | publisher = Prentice-Hall | year = 2000 | isbn=0-13-181629-2 }} *{{cite book | author = S. Willard | title = General Topology | publisher = Addison-Wesley | year = 1970 | isbn=0-201-08707-3 }} *{{cite book|和書|author=松坂和夫|title=集合・位相入門|publisher=岩波書店|year=1968|ISBN=4-00-005424-4}} == 注記 == <references /> {{DEFAULTSORT:きようかい}} [[Category:位相空間論]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Lang
(
ソースを閲覧
)
テンプレート:Lang-en
(
ソースを閲覧
)
テンプレート:混同
(
ソースを閲覧
)
境界 (位相空間論)
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報