対角行列のソースを表示
←
対角行列
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[数学]]、特に[[線型代数学]]において、'''対角行列'''(たいかくぎょうれつ、{{lang-en-short|diagonal matrix}})とは、[[正方行列]]であって、その対角成分({{math|(''i'', ''i'')}}-要素)以外が零であるような行列のことである。 :<math> \begin{bmatrix} c_1 &&&0\\ & c_2 &&\\ && \ddots &\\ 0&&&c_n \end{bmatrix}</math> この対角行列は、[[クロネッカーのデルタ]]を用いて (''c''<sub>''i''</sub> δ<sub>''ij''</sub>) と表現できる。また、しばしば : diag(''c''<sub>1</sub>, ''c''<sub>2</sub>, ..., ''c''<sub>''n''</sub>) のようにも書かれる。 [[単位行列]]や[[スカラー行列]]は対角行列の特殊例である。 == 性質 == * 対角行列の[[行列式]]は、各対角成分の[[総乗]] Π''c''<sub>''i''</sub> に等しい。対角行列の行列式は、対角成分が等しい[[三角行列|上三角行列]]、[[三角行列|下三角行列]]の行列式とも等しくなる。 * 対角行列の[[転置行列]]は同一である。そのため対角行列は[[対称行列]]でもある。 * 対角行列の[[逆行列]]は対角成分の[[逆数]]を並べた対角行列である。 *:<math> \begin{bmatrix} c_1 &&&0\\ & c_2 &&\\ && \ddots &\\ 0&&&c_n \end{bmatrix}^{-1} = \begin{bmatrix} c_1^{-1} &&&0\\ & c_2^{-1} &&\\ && \ddots &\\ 0&&&c_n^{-1} \end{bmatrix}</math> == 例 == <math> \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ \end{bmatrix} </math> <math> \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 10 & 0 & 0\\ 0 & 0 & -8 & 0\\ 0 & 0 & 0 & 7 \end{bmatrix} </math> == 三重対角行列 == '''三重対角行列'''(さんじゅうたいかくぎょうれつ、[[:en:Tridiagonal matrix|tridiagonal matrix]])とは、主対角線とその上下に隣接する対角線にだけ非零の成分を持つ行列であり<ref>{{cite|和書 |title=コンピュータによる流体力学 |author=Joel H. Ferziger |author2=Milovan Perić |translator=小林敏雄、谷口伸行、坪倉誠 |publisher=シュプリンガー・フェアラーク東京 |year=2003 |isbn=4-431-70842-1 |page=91}}</ref>、[[疎行列]]の一種である。 :<math>\begin{bmatrix} {b_1} & {c_1} & { } & { } & { 0 } \\ {a_2} & {b_2} & {c_2} & { } & { } \\ { } & {a_3} & {b_3} & \ddots & { } \\ { } & { } & \ddots & \ddots & {c_{n-1}}\\ { 0 } & { } & { } & {a_n} & {b_n}\\ \end{bmatrix}</math> [[数値解析]]においてしばしば三重対角行列を含む方程式が現れる。このような方程式はトーマスアルゴリズムあるいは{{仮リンク|三重対角行列アルゴリズム|en|Tridiagonal matrix algorithm}} (TDMA) と呼ばれる、計算量のオーダーが''O'' (''n'') の解法を用いて解かれる。 与えられた行列を三重対角行列に変換する方法(三重対角化)には、[[ハウスホルダー変換]]や[[ランチョス法]]が知られている。 == 参考文献 == {{reflist}} == 関連項目 == * [[対角化]] * [[巡回行列]] * [[特異値分解]] {{DEFAULTSORT:たいかくきようれつ}} [[Category:行列]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Cite
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
対角行列
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報