常磁性のソースを表示
←
常磁性
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{出典の明記|date=2016年12月}} [[File:Paramagnetic probe without magnetic field.svg|thumb|小さな磁石から構成された常磁性プローブの簡単な説明図。]] '''常磁性'''(じょうじせい、{{lang-en-short|paramagnetism}})とは、外部[[磁場]]が無いときには[[磁化]]を持たず、磁場を[[印加]]するとその方向に弱く磁化する[[磁性]]を指す。熱ゆらぎによる[[スピン角運動量|スピン]]の乱れが強く、自発的な配向が無い状態である。 常磁性の物質の[[磁化率]]([[帯磁率]])χは温度Tに反比例する。これを'''キュリーの法則'''と呼ぶ。 :<math>\chi = \frac{C}{T}</math> [[比例定数]]Cは[[キュリー定数]]と呼ばれる。 == 電子のスピンとの関係 == 常磁性を持つ分子や原子は、外部磁場がなくとも永久磁石となる[[双極子]]モーメントを持っている。このモーメントはその分子・原子における[[電子軌道]]([[磁気モーメント]]を参照)での[[不対電子]]の[[スピン角運動量|スピンか]]ら生まれている。外部磁場がない場合、双極子どうしは互いに作用せず、[[熱]]ゆらぎのためそれぞれバラバラな方向を向いている。ゆえにこのとき、この物質は[[磁性]]を持たない。しかし外部磁場が加えられると、双極子も加えられた磁場と同じ方向を向き、外部磁場と同じ方向に磁化されることになる。かつては、この電子の整列は外部磁場によって磁気モーメントに[[トルク]]が生まれ、外部磁場に平行に並ぼうとするために起こると考えられていた。しかし、実際はスピンや[[角運動量]]の[[量子力学]]的性質によるものだった。 近接する双極子が相互に影響を与えるだけのエネルギーを持っていて、同時に電子スピンが外部磁場と同じあるいは逆向きに並び、磁場を作ることができる場合、それは[[強磁性]]([[永久磁石]])あるいは[[反強磁性]]をもつことになる。しかしその物質が[[強磁性]]や[[反強磁性]]を示す場合でも、ある温度以上になると、スピンは互いにでたらめの方向を向くようになって常磁性を示すようになる。この温度を強磁性では[[キュリー温度]]、反強磁性では[[ネール温度]]という。これは、高温では物質のもつ熱運動のエネルギーがスピンの相互作用のエネルギーを上回るためである。 一般的に、常磁性の影響は非常に小さい。多くの常磁性を持つ物質(常磁石)は[[磁化率]]が10<sup>-3</sup>から10<sup>-5</sup>のオーダーであるが、[[磁性流体]]のような合成常磁石の中には10<sup>-1</sup>のオーダーを持つものもある。 === 非局在化 === {|class="wikitable sortable" style="float:right; margin:20px" width="200px" |+ パウリ常磁性体<ref name="magneticValues">{{Cite web|url=http://hyperphysics.phy-astr.gsu.edu/Hbase/tables/magprop.html|title=Magnetic Properties of Solids|last=Nave|first=Carl L|work={{仮リンク|HyperPhysics|en|Hyperphysics}}|accessdate=2008-11-09}}</ref> !物質!!磁化率, <math>\chi_v</math> [10<sup>−5</sup>] |- |[[タングステン]]||6.8 |- |[[セシウム]]||5.1 |- |[[アルミニウム]]||2.2 |- |[[リチウム]]||1.4 |- |[[マグネシウム]]||1.2 |- |[[ナトリウム]]||0.72 |} [[電気伝導体]]の物質中では、[[電子]]は[[共鳴理論|非局在化]]し、物質中を[[自由電子]]と同様に運動する。伝導性は[[バンド構造]]の図で、[[バンド理論|エネルギーバンド]]の空白を埋めるように電子が上がってくることによると理解されている。通常の非磁気伝導体は、スピンが上向きの電子と下向きの電子が1つの軌道に共に入っている。しかし磁場が加えられると、スピンの向きが違うと[[:w:Potential energy#Magnetic potential energy|磁気]][[位置エネルギー|ポテンシャルエネルギー]]も異なるので、伝導バンドが、スピンが上向きの電子のバンドと下向きの電子のバンドに分かれる。[[フェルミ準位]](電子の全[[化学ポテンシャル]]エネルギー)はどちらのバンドにとっても同一であるため、この分裂によってエネルギーが下がったバンドにとっては少し余剰のエネルギーが生まれることになる。これが、'''[[パウリ常磁性]]'''と呼ばれる弱い常磁性である。 常磁性の物質は、原子中の{{仮リンク|核電子|en|Core electron}}([[価電子]]でない電子)が持つ[[反磁性]]を打ち消さなければならない。より強い磁性を持つためには、非局在化した電子よりも、局在化した電子のほうが必要である。しかし、あるケースにおいては、バンド構造が、異なるエネルギーを持つスピンの向きが反対の電子を持つ2つの非局在化したサブバンドとなることがある。もし一方のサブバンドが優先的に電子を入れた場合、その物質は強磁性を持つことになる。これはあまり非局在化しない、比較的狭い(d軌道以降)バンドでしか起こらない。 === s軌道・p軌道の電子=== 一般的に、固体中では近接する電子の[[波動関数|軌道]]を[[重ね合わせ]]、エネルギーが[[フェルミエネルギー]]となるため、電子は強く非局在化する。これは、この軌道の電子の数ではバンドのエネルギー遷移にあまり敏感には反応せず、弱い磁性しか持たないことを意味している。これが、[[最外殻電子]]が[[s軌道]]や[[p軌道]]にある[[金属]]がパウリの常磁性を持ったり、[[遷移元素]]の[[金]]が反磁性を持つ理由である。金の場合、反磁性は[[閉殻]]となっている内側の[[電子殻]]が自由電子の弱い常磁性に勝っていることによる。 === d軌道・f軌道の電子 === 強い磁性が観測されるのは、[[d軌道]]や[[f軌道]]の電子が関わっている場合のみである。特に、f軌道の電子は強く局在化する。さらに、[[ランタノイド]]の磁気モーメントの大きさは[[核磁気共鳴画像法|MRI]]で用いられる[[ガドリニウム]](III)では不対電子7個分にもなる。このため、ランタノイドに含まれる[[ネオジム]]や[[サマリウム]]は強力な磁石となる。 === 分子の局在化 === [[分子]]でも、電子の局在化につながるものもある。分子ではエネルギー的な理由から、通常スピンが片方だけの電子が軌道に入ることはない。しかし閉殻となっていない分子は自然界には存在する。[[酸素]]分子がその一例である。固体状態でも酸素分子は2つの不対電子を含む[[ラジカル (化学)|ラジカル]]であり、常磁性を持つ。不対電子は2p軌道からの電子が不対電子となるが、分子どうしで軌道が重ね合わせられることは限られている。[[結晶格子]]中の酸素原子間の距離が長すぎるためであり、電子は非局在化して磁気モーメントは不対のままになる。 == 出典 == {{脚注ヘルプ}} {{Reflist}} == 関連記事 == * [[パウリ常磁性]] * [[ヴァン・ヴレック常磁性]] * [[超常磁性]] {{Physics-stub}} {{磁性}} {{Condensed matter physics topics}} {{Normdaten}} {{DEFAULTSORT:しようしせい}} [[Category:磁気]]
このページで使用されているテンプレート:
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:Condensed matter physics topics
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Normdaten
(
ソースを閲覧
)
テンプレート:Physics-stub
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
テンプレート:出典の明記
(
ソースを閲覧
)
テンプレート:磁性
(
ソースを閲覧
)
テンプレート:脚注ヘルプ
(
ソースを閲覧
)
常磁性
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報