幾何学賞のソースを表示
←
幾何学賞
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''幾何学賞'''(きかがくしよう)は、[[日本数学会]]幾何学分科会が授与している[[賞]]。[[1987年]]に創設された。 広い意味での[[幾何学]]([[微分幾何]]、[[トポロジー]]、[[代数幾何]]など)において目覚しい業績をあげた人物、または長年にわたり幾何学に貢献した人物に贈られる。毎年2件以内。共同研究も受賞業績に含まれる。 == 受賞者の一覧 == *[[1987年]] :[[河内明夫]]:[[結び目理論]]及び低次元[[多様体]]論における研究業績 :[[小林昭七]]:[[微分幾何学]]の広い分野にわたる数多くの重要な研究業績、及び幾多の著書により後進へのよき指針を与えたこと *[[1988年]] :[[藤本坦孝]]:[[極小曲面]]の[[ガウス写像]]の除外値に関する永年の予想の完全な解決 *[[1989年]] :[[深谷賢治]]:[[リーマン多様体]]の崩壊理論とその応用に関する業績 :[[武藤義夫]]:半世紀を越える幾何学研究において先駆的な成果を数々挙げ現在もなお活発に研究を続けていること *[[1990年]] :[[二木昭人]]:[[ケーラー・アインシュタイン計量]]の存在に関する[[二木不変量]]の発見 *[[1991年]] :[[竹内勝]]:多年にわたる[[対称空間]]に関する一連の研究業績 :[[坪井俊]]:<math>C^1</math> 級[[葉層構造]]に関する独創的な研究業績 *[[1992年]] :[[小磯憲史]]:[[アインシュタイン計量]]の[[変形理論]]に関する研究業績 :[[藤木明]]:[[ケーラー多様体]]の[[モジュライ空間]]に関する研究業績 *[[1993年]] :[[吉田朋好]]:低次元多様体と[[大域解析学]]に関する研究業績 *[[1994年]] :[[小林亮一]]:[[開代数多様体]]上のアインシュタイン・ケーラー計量に関する研究業績 :[[長野正]]:[[対称空間論]]の幾何学的構築をはじめとする微分幾何学の広い分野にわたる多くの研究業績 *[[1995年]] :[[梅原雅顕]]・[[山田光太郎]]:3次元[[双曲型空間]]内の[[平均曲率]]1の曲面の幾何に関する一連の研究 *[[1996年]] :[[大森英樹]]:無限次元[[リー群]]論の構築に関わる一連の業績 *[[1997年]] :[[中島啓]]:[[代数曲面]]の[[ヒルベルトスキーム]]による[[ハイゼンベルク代数|ハイゼンベルグ代数]]の表現の構成 :[[板東重稔]]:解析的手法による[[複素微分幾何学]]における研究業績 *[[1998年]] :[[大槻知忠]]:3次元多様体の有限型[[不変量]]に関する研究業績 :[[金井雅彦]]:[[離散群]]作用の[[剛性]]に関する研究業績 *[[1999年]] :[[小野薫]]:[[シンプレクティック幾何学]]における一連の研究、特にアーノルド予想の解決 :[[山口孝男]]:リーマン多様体の収束・崩壊現象に関する一連の研究 *[[2000年]] :[[大沢健夫]]:<math>L^2</math> 評価とその幾何学への応用 :[[小島定吉]]:3次元[[双曲幾何学]]に関する一連の研究業績 *[[2001年]] :[[宮岡礼子]]:[[デュパン超曲面]]および[[極小曲面]]に関する研究業績 *[[2002年]] :[[清原一吉]]:[[可積分測地流]]の大域的研究と <math>C_l</math> 計量の具体的構成 :[[辻元]]:[[複素代数幾何学]]における特異エルミート計量の構成と応用 *[[2003年]] :[[平地健吾]]:[[強擬凸領域]]の[[ベルグマン核]]の[[不変式]]論に関する研究業績 :[[松元重則]]:[[力学系]]理論と[[葉層構造]]論の接点における数々の研究業績 *[[2004年]] :[[鎌田聖一]]:2次元ブレイドおよび4次元結び目理論の基礎の構築 :[[納谷信]]:実および[[複素双曲空間]]の[[理想境界]]における不変計量の構成 *[[2005年]] :[[後藤竜司]]:特殊[[ホロノミー]]をもつ幾何に対する統一的理論の構成 :[[藤原耕二]]:幾何学的[[群論]]に関する研究業績 *[[2006年]] :[[塩谷隆]]:{{仮リンク|アレクサンドロフ空間|en|Alexandrov space}}に関する一連の研究業績 :[[満渕俊樹]]:[[多様体]][[モデュライ]]に対する[[小林・ヒッチン対応]]の[[汎関数]]的手法による研究 *[[2007年]] :[[森田茂之]]:[[写像類群]]を巡る一連の位相幾何学的研究 :[[吉川謙一]]:解析的トーションとモジュラス空間上の保型形式に関する研究 *[[2008年]] :[[葉廣和夫]]:クラスパーに沿った絡み目と3次元多様体の手術の研究 *[[2009年]] :[[木田良才]]:写像類群の測度同値剛性定理の証明 :[[本田公]]:接触トポロジーの研究 *[[2010年]] :[[芥川和雄]]:山辺不変量の研究 :[[本多宣博]]:自己双対多様体のツイスター空間の研究 *[[2011年]] :[[太田慎一 (数学者)|太田慎一]]:[[フィンスラー多様体]]の幾何解析 :[[齋藤恭司]]:周期積分の理論の現代化の実現 *[[2012年]] :[[大鹿健一]]:Bers-Sullivan-Thurstonの稠密性予想の解決 :[[戸田幸伸]]:[[導来圏]]の安定性条件と Donaldson-Thomas 不変量の研究 *[[2013年]] :[[河野俊丈]]:幾何学的量子表現に関する一連の研究 :[[山ノ井克俊]]:Gol'dberg-Mues予想の解決 *[[2014年]] :[[倉西正武]]:カルタン-倉西理論,CR幾何,倉西族等に代表される単なる幾何学の枠組みを超えた多年にわたる輝かしい研究業績 *[[2015年]] :[[入谷寛]]:[[量子コホモロジー]]の研究 :[[佐伯修]]:[[安定写像]]と多様体のトポロジーの研究 *[[2016年]] :[[相馬輝彦]]:3次元[[多様体論]]に関する一連の研究業績 :[[高山茂晴]]:一般型[[代数多様体]]の多重標準写像の双有理性に関する[[代数幾何]]的研究 *[[2017年]] :[[小林治 (数学者)|小林治]]:微分幾何学における数々の先見性に富む業績 :[[作間誠]]:結び目理論と双曲幾何学に関する一連の研究 *[[2018年]] :[[尾高悠志]]:K-安定性と[[モジュライ空間|モデュライ理論]]の研究 :[[本多正平]]:[[リーマン多様体]]の収束の幾何解析的研究 *[[2019年]] :[[入江慶]]:接触・[[シンプレクティック幾何学|シンプレクティックトポロジー]]とストリングトポロジーの研究 :[[塚本真輝]]:[[力学系]]における平均次元の研究 *[[2020年]] :[[枡田幹也]]:変換群論、特にトーリックトポロジーの研究 *[[2021年]] :[[河澄響矢]]・[[久野雄介]]:Lie 代数の手法による曲面の写像類群の研究 :[[村上順]]:結び目と3次元多様体の量子位相不変量に関する一連の研究 *[[2022年]] :[[入江博]]・[[柴田将敬]]:3次元対称凸体のMahler予想の解決 :[[桑垣樹]]:シンプレクティック幾何学と層の超局所解析の研究 *[[2023年]] :[[藤田健人]]:Fano多様体のK安定性の双有理幾何学的手法による研究 *[[2024年]] :[[今野北斗]]:ゲージ理論の展開と4次元幾何学への応用 :[[細野忍]]:ミラー対称性と周期積分の研究 == 日本数学会関連の賞 == *[[春季賞]] *[[秋季賞]] *[[代数学賞]] *[[解析学賞]] *[[建部賞]] == 外部リンク == * [https://www.mathsoc.jp/section/geometry/prize/prize_index.html 日本数学会幾何学賞] - 幾何学分科会の公式ページ {{DEFAULTSORT:きかかくしよう}} [[Category:数学の賞]] [[Category:数学に関する記事]] [[Category:日本の科学技術賞]]
このページで使用されているテンプレート:
テンプレート:仮リンク
(
ソースを閲覧
)
幾何学賞
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報