環上の加群のソースを表示
←
環上の加群
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[抽象代数学]]における[[環 (数学)|環]]上の'''加群'''(かぐん、{{lang-en-short|''module''}})とは、[[ベクトル空間]]を一般化した概念で、係数([[スカラー (数学)|スカラー]])を[[可換体|体]]の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的な[[アーベル群]]であって、その元と環の元との間に乗法が定義され、その乗法が[[結合法則|結合的]]かつ加法に関して[[分配法則|分配的]]となるようなものである。 任意の[[アーベル群]]は[[有理整数環]]上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環の[[イデアル]]は環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は[[群の表現論]]に非常に近しい関連を持つ。また、加群は[[可換環論]]や[[ホモロジー代数]]における中心概念の一つであり、ひろく[[代数幾何学]]や[[代数的位相幾何学]]において用いられる。 == 動機 == ベクトル空間においては、[[スカラー (数学)|スカラー]]の全体は[[可換体|体]]を成し、ベクトルに対して[[分配法則|分配律]]などの特定の条件を満足するスカラー乗法によって[[作用 (数学)|作用]]している。環上の加群においては、スカラーの全体は[[環 (数学)|環]]であればよく、その意味で環上の加群の概念は重大な一般化になっている。可換環論における重要な概念である[[イデアル (環論)|イデアル]]および[[剰余環]]は、いずれも環上の加群とみることができ、イデアルや剰余環に関するさまざまな議論を加群の言葉によって統一的に扱うことができるようになる。非可換環論では、イデアルの(作用の入る向きとして)左右を区別するし、環上の加群においてもそれはより顕著になることだが、しかしさまざまに重要な環論的議論において片側(大抵は左)からの作用に関するものだけを条件として提示することが行われる。 加群の理論のおおくは、ベクトル空間のもつ好ましい性質が、[[単項イデアル環]]のような「素性のよい」{{lang|en|(well-behaved)}} 環上の加群の領域でどれだけたくさん存在するかというような議論からなるが、しかしながら環上の加群はベクトル空間に比べてかなり複雑である。たとえばどんな加群でも[[基底]]を持つわけではないし、基底を持つ([[自由加群]]と呼ばれる)加群であっても基礎環(係数環)が[[Invariant basis number|不変基底数]]条件を満足しないならば階数も一意ではない。これはベクトル空間が([[選択公理]]を仮定すれば)常に基底を持ち、基底の濃度が常に一定となることと対照的である。 == 厳密な定義 == 環 ''R'' 上の'''左''' ''R''-'''加群'''もしくは ''R''-'''左加群'''とは、[[アーベル群]] (''M'', +) と'''スカラー乗法'''と呼ばれる作用 ''R'' × ''M'' → ''M'' の組であって、その作用(通常は、''r'' ∈ ''R'' と ''x'' ∈ ''M'' に対して ''x'' のスカラー ''r''-倍を単に文字を併置して ''rx'' と記す)は、''r'', ''s'' ∈ ''R'', ''x'', ''y'' ∈ ''M'' は任意として、条件 #<math>r(x+y) = rx + ry,</math> #<math>(r+s)x = rx + sx,</math> #<math>(rs)x = r(sx),</math> #<math>1_Rx = x</math> を満足するものでなければならない(最後の条件は ''R'' が乗法単位元を持つときで、それを 1<sub>''R''</sub> で表している。環が[[単位的環|単位的]]であることを仮定しない文脈では、''R''-加群の定義においてこの最後の条件も課されず、特にこの条件をも満足することで定まる構造を'''単位的左''' ''R''-'''加群'''、'''単型''' ''R''-'''左加群'''などと呼んで区別する。本項では用語の一貫性を図るため、特に断りの無い場合は環も加群も単位的であると仮定する)。 しばしば、スカラーの作用を ''f''<sub>''r''</sub> のような形に書くこともあり、もちろん ''f''<sub>''r''</sub>(''x'') = ''rx'' なのだが、このように書くと ''f'' を ''R'' の各元 ''r'' を対応する作用素 ''f''<sub>''r''</sub> へ移す写像とみることもできて、たとえば先ほどの加群の公理の最初の条件は ''f''<sub>''r''</sub> が ''M'' 上の[[群準同型|自己準同型]]となることを述べていて、残りの条件は ''f'' が ''R'' から[[自己準同型環]] End(''M'') への環準同型となることを要請するものになっている。すなわち、環上の加群とは環作用を持つアーベル群のことである([[群作用]]あるいは[[作用 (数学)|作用]]も参照)。この意味では、環上の加群の理論は群の(あるいは同じことだが群環の)ベクトル空間における作用を扱う[[群の表現論]](線型表現論)の一般化である。 通常は演算を省略して、単に「左 ''R''-加群 ''M''」とか、係数環を明示するために <sub>''R''</sub>''M'' のように記す。環の作用の向きだけ右からに変更して(つまり ''M'' × ''R'' → ''M'' の形のスカラー乗法があって、左加群の公理でスカラーを左に書いていたところを、スカラー ''r'' や ''s'' を ''x'', ''y'' の右側に書くようにして)、同様に右 ''R''-加群 ''M'', ''M''<sub>''R''</sub> が定義される。 [[両側加群]] {{lang|en|(''bimodule'')}}は、左加群でも右加群でもあってなおかつそれらの作用が可換となるようなものである。 ''R''が[[可換環]]ならば、左 ''R''-加群と右 ''R''-加群の概念は一致し<ref group="note">任意の ''r'' ∈ ''R'' と ''x'' ∈ ''M'' に対して ''rx'' = ''xr'' とおくと作用の左右を入れ替えることができる。非可換の場合はたとえば (''rs'')''x'' = ''x''(''rs'') でなければならないが、いっぽう公理に従えば (''rs'')''x'' = ''r''(''sx'') = (''sx'')''r'' = (''xs'')''r'' = ''x''(''sr'') となってうまくいかない。</ref>、単に ''R''-加群と呼ばれる。 == 例 == * ''K'' が[[可換体|体]]ならば、「''K''-線型空間」(''K'' 上のベクトル空間)の概念と ''K''-加群の概念は一致する。 * '''Z''' を有理整数環とすると、'''Z'''-加群の概念は[[アーベル群]]の概念に一致する。すなわち、一意的な仕方で任意のアーベル群を '''Z''' 上の加群にすることができる。これには、''n'' > 0 に対して ''nx'' = ''x'' + ''x'' + ... + ''x''(''n''-項の和)とし、0''x'' = 0 および (−''n'')''x'' = −(''nx'') とおけばよい。このようにアーベル群を加群と見たものは必ずしも[[基底]]を持たない。実際、[[捩れ (代数学)|ねじれ元]]を持つような群は基底を持たない(ただし、有限体をそれ自身の上の加群と見たときは基底を持つ)。 * ''R'' を勝手な環とし ''n'' を[[自然数]]とするとき、[[環の直積|直積]] ''R''<sup>''n''</sup> は成分ごとの演算で ''R'' 上の左および右加群となる。したがって特に ''n'' = 1 のとき ''R'' 自身は環の乗法をスカラー乗法として ''R''-加群であり、これを(左/右)正則加群と呼ぶ。''n'' = 0 とすれば、''R'' の加法単位元のみからなる自明な ''R''-加群 {0} が得られる。これらの加群は[[自由加群]]と呼ばれ、''R'' が(たとえば可換環や体のような)[[Invariant basis number|不変基底数]]を持つ環ならば、直積の個数 ''n'' が自由加群の階数となる。 * ''S'' が空でない[[集合]]で ''M'' が左 ''R''-加群、''M''<sup>''S''</sup> を[[写像]] ''f'': ''S'' → ''M'' 全体の成す集合とするとき、''M''<sup>''S''</sup> における加法とスカラー倍を<div style="margin: 1ex auto 1ex 2em">(''f'' + ''g'')(''s'') = ''f''(''s'') + ''g''(''s'') および (''rf'')(''s'') = ''rf''(''s'')</div>で定めると ''M''<sup>''S''</sup> は左 ''R''-加群となる。右 ''R''-加群の場合も同様。特に ''R'' が可換ならば ''R''-加群の準同型 ''h'': ''M'' → ''N'' の全体は ''R''-加群になる(実は ''N''<sup>''M''</sup> の部分加群となる)。 * ''X'' が[[可微分多様体]]のとき、''X'' 上の[[実数]]に値をとる[[滑らかな函数]]の全体は環 ''C''<sup>∞</sup>(''X'') を成す。''X'' 上で定義される滑らかな[[ベクトル場]]全体の成す集合は ''C''<sup>∞</sup>(''X'') 上の加群を成す。''X'' 上の[[テンソル場]]の全体や[[微分形式]]の全体についても同様である。もっと一般に、任意の[[ベクトル場]]の切断の全体は ''C''<sup>∞</sup>(''X'') 上の[[射影加群]]であり、[[スワンの定理]]により、逆に任意の射影加群はあるベクトル束の切断全体の成す加群に同型になる。すなわち、''C''<sup>∞</sup>(''X'')-加群の[[圏 (数学)|圏]]と ''X'' 上のベクトル束の圏は[[圏同値|同値]]である。 * 成分が実数の ''n''-次[[正方行列]]の全体は環を成す。それを ''R'' とし、''n''-次元[[ユークリッド空間]] '''R'''<sup>''n''</sup>(元は縦ベクトルで考える)に対して[[行列の乗法]]によって ''R'' の作用をさだめれば、これは左 ''R''-加群となる。 * ''R'' を任意の環、''I'' を ''R'' の任意の左[[イデアル (環論)|イデアル]]とすると、''I'' は ''R'' 上の左加群である。もちろん同様に右イデアルは右加群である。 * ''R'' を環とし、環 ''R''<sup>op</sup> を ''R'' から台となる集合と加法はそのままで乗法だけを逆にして得られる環([[反対環]])とする。つまり、''R'' において ''ab'' = ''c'' ならば ''R''<sup>op</sup> において ''ba'' = ''c'' である。このとき、任意の'''左''' ''R''-加群 ''M'' はそのまま'''右''' ''R''<sup>op</sup>-加群と見ることができ、''R'' 上の任意の右加群は ''R''<sup>op</sup> 上の左加群と考えることができる。 == 部分加群と準同型 == ''M'' を左 ''R''-加群、''N'' を ''M'' の[[部分群]]とするとき、''N'' が ''M'' の'''部分加群''' {{lang|en|(''submodule'')}} あるいはより明示的に ''R''-部分加群(または部分 ''R''-加群)であるとは、任意の ''r'' ∈ ''R'' と ''n'' ∈ ''N'' に対して積 ''rn'' がふたたび ''N'' に属するときに言う。''M'' が右加群の場合は ''nr'' が ''N'' に属するとき同様に部分加群という。 与えられた加群 ''M'' の部分群全体の成す集合は、ふたつの二項演算 "+" および "∩" に関して[[束 (束論)|束]]を成し[[モジュラー束|モジュラー法則]] : ''M'' の部分加群 ''U'', ''N''<sub>1</sub>, ''N''<sub>2</sub> で ''N''<sub>1</sub> ⊂ ''N''<sub>2</sub> が成り立つとき、 (''N''<sub>1</sub> + ''U'') ∩ ''N''<sub>2</sub> = ''N''<sub>1</sub> + (''U'' ∩ ''N''<sub>2</sub>) が成立する を満たす。 ''M'' および ''N'' が左 ''R''-加群のとき、[[写像]] ''f'': ''M'' → ''N'' が ''R''-'''加群の準同型'''であるとは、任意の ''m'', ''n'' ∈ ''M'', ''r'', ''s'' ∈ ''R'' に対して :<math>f(rm + sn) = rf(m) + sf(n)</math> が満たされるときに言う。ほかの数学的対象に関する準同型が対象の構造を保つのと同じく、加群の準同型も加群の構造を保つ。 [[全単射]]な加群の準同型写像は加群の[[同型写像]]であり、同型写像を持つふたつの加群は互いに[[同型]]であるという。ふたつの同型な加群は、それらの元の表し方が異なるだけであり、実用上は同一視することができる。 加群準同型 ''f'': ''M'' → ''N'' の[[核 (代数学)|核]]とは ''f'' によって 0 に移される元全体から成る ''M'' の部分加群である。群やベクトル空間において馴染み深い[[同型定理#加群|同型定理]]は ''R''-加群に対しても成立する。 左 ''R''-加群およびそれらの間の加群準同型の全体は[[圏 (数学)|圏]]を成し、''R''-'''Mod''' で表される。この圏は[[アーベル圏]]である。 == 加群の種類 == ; 有限生成加群: 加群 ''M'' が[[有限生成加群|有限生成]]あるいは有限型であるとは、''M'' の有限個の元 ''x''<sub>1</sub>,...,''x''<sub>''n''</sub> で、それらの ''R''-係数[[線型結合]]によって ''M'' の任意の元が書き表されるときに言う。 ; 巡回加群: 加群が[[巡回加群]]であるとは、それが唯一つの元で生成されるときにいう。 ; 自由加群: [[自由加群]]は基底を持つ加群である。これは係数環 ''R'' のいくつかのコピーの[[加群の直和|直和]]に同型である加群といっても同じである。自由加群はベクトル空間とかなり同じように振舞う。 ; 射影加群: [[射影加群]]は自由加群の[[加群の直和|直和因子]]であり、自由加群とよい性質をたくさん共有している。 ; 入射加群: [[入射加群]]は射影加群の双対として定義される。 ; 平坦加群: [[平坦加群]]は[[テンソル積]]で単射が保たれるような加群である。 ; 単純加群: [[単純加群]] ''S'' とは {0} と ''S'' 自身しか部分加群を持たないような {0} でない加群のことである。単純加群はしばしば'''既約加群'''とも呼ばれる<ref>Jacobson (1964), [https://books.google.com.br/books?id=KlMDjaJxZAkC&pg=PA4 p. 4], Def. 1; {{PlanetMath|urlname=IrreducibleModule|title=Irreducible Module}}</ref>。 ; 半単純加群: [[半単純加群]]は単純加群の直和である。 ; 直既約加群: [[直既約加群]]とは、{0} でないふたつの部分加群の[[加群の直和|直和]]に書くことができない加群のことをいう。任意の既約加群は直既約加群だが逆は必ずしも成立しない。 ; 忠実加群: 忠実加群 ''M'' とは、''R'' の 0 でない各元 ''r'' に対して ''r'' の ''M'' への作用が自明でない(すなわち、''M'' の元 ''x'' で ''rx'' ≠ 0 となるものがある)ときに言う。これは ''M'' の[[零化域]] {{lang|en|(annihilator)}} が零イデアルであるときといっても同じである。 ; ネーター加群: [[ネーター加群]]は任意の部分加群が有限生成となる加群である。同じことだが、ネーター加群の部分加群からなる任意の昇鎖列は有限の長さで止まる。 ; アルティン加群: [[アルティン加群]]とは、その部分加群からなる任意の降鎖列が有限の長さで止まるような加群をいう。 ; 次数加群: [[次数付き加群]]とは、直和分解 ''M'' = ⊕<sub>''x''</sub> ''M''<sub>''x''</sub> を持つ、[[次数付き環]] ''R'' = ⊕<sub>''x''</sub> ''R''<sub>''x''</sub> 上の加群であって、任意の添字 ''x'', ''y'' に対して ''R''<sub>''x''</sub>''M''<sub>''y''</sub> ⊂ ''M''<sub>''x''+''y''</sub> と成るようなものを言う。 == 表現論との関係 == ''M'' を左 ''R''-加群とすると、''R'' の元 ''r'' の'''作用'''が ''x'' を ''rx'' へ(右加群の場合は ''xr'' へ)うつす写像として定まり、その写像はアーベル群 (''M'', +) 上の[[群準同型|群の自己準同型]]となる必要がある。End<sub>'''Z'''</sub>(''M'') で表される、''M'' の群自己準同型の全体は、加法と合成に関して環となるが、''R'' の元 ''r'' にその作用を対応させることにより、''R'' から End<sub>'''Z'''</sub>(''M'') への[[環準同型]]が定義される。 このような環準同型 ''R'' → End<sub>'''Z'''</sub>(''M'') は ''M'' における ''R'' の'''表現''' {{lang|en|(''representation'')}} と呼ばれる。左 ''R''-加群を定義するもう一つの同値な方法は、アーベル群 ''M'' にその上の環 ''R'' の表現を考えることである。 表現が'''忠実''' {{lang|en|(''faithful'')}} であるとは、写像 ''R'' → End<sub>'''Z'''</sub>(''M'') が[[単射]]となることをいう。加群の言葉で言えば、これは ''R'' の元 ''r'' が ''M'' のすべての元 ''x'' に対して ''rx'' = 0 を満たすならば ''r'' = 0 と成ることを言っている。任意のアーベル群は[[有理整数環]]または適当な[[剰余類環]] '''Z'''/''n'''''Z''' 上の忠実加群である。 == 一般化 == 任意の環 ''R'' をただひとつの対象から成る[[前加法圏]]と看做すことができる。この観点で言えば、左 ''R''-加群とは ''R'' からアーベル群の圏 '''Ab''' への共変[[加法的函手]]に他ならない。右 ''R''-加群は反変加法的函手である。このことが示唆するのは、任意の前加法圏 ''C'' に対し、''C'' から '''Ab''' への加法的函手は ''C'' 上の一般化された左加群と考えるべきであるということである。このような函手の全体は、環上の加群の圏 ''R''-'''Mod''' の一般化となる[[函手圏]] ''C''-'''Mod''' を成す。 '''可換環'''上の加群は別な方向に一般化することができる。まず、[[環付き空間]] (''X'', O<sub>''X''</sub>) をとり、O<sub>''X''</sub>-[[加群の層]]を考える。これらの全体は[[代数幾何学]]の[[概型|スキーム]]論的取り扱いで重要な圏 O<sub>''X''</sub>-'''Mod''' を成す。 ''X'' がただ一点からなるならば、これは可換環 O<sub>''X''</sub>(''X'') 上の通常の意味での加群の圏である。 [[半環]]上の加群を考えることもできる。環上の加群はアーベル群だが、半環上の加群は[[交換法則|可換]][[単位的半群]]であればよい。通常の加群に関する議論の多くが、この一般化された意味での加群に対しても有効である。特に、任意の半環 ''S'' に対して ''S'' 上の ''n''-次行列全体は半環を成し、''S'' の元の順序 ''n''-組の全体はその行列半環上の(ここで言う意味でのみだが)加群となる。これにより、理論計算機科学の分野から半環の概念を併合した、[[ベクトル空間]]の概念の更なる一般化が得られたことになる。 == 関連項目 == * [[群環]] * [[多元環]] == 注記 == <references group="note"/> == 出典 == <references /> == 参考文献 == * F.W. Anderson and K.R. Fuller: ''Rings and Categories of Modules'', Graduate Texts in Mathematics, Vol. 13, 2nd Ed., Springer-Verlag, New York, 1992, ISBN 0-387-97845-3, ISBN 3-540-97845-3 * Nathan Jacobson. ''Structure of rings''. Colloquium publications, Vol. 37, 2nd Ed., AMS Bookstore, 1964, ISBN 9780821810378 {{Normdaten}} {{DEFAULTSORT:かんしようのかくん}} [[Category:抽象代数学]] [[Category:代数的構造]] [[Category:加群論|*]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Lang
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Normdaten
(
ソースを閲覧
)
テンプレート:PlanetMath
(
ソースを閲覧
)
環上の加群
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報