磁束のソースを表示
←
磁束
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{物理量 | 名称 = | 英語 = magnetic flux | 画像 = | 記号 =''Φ'' | 次元 =[[質量|M]] [[長さ|L]] {{sup|2}} [[時間|T]] {{sup-|2}} [[電流|I]] {{sup-|1}} | 階 =スカラー | SI =[[ウェーバ]](Wb) | CGS = [[マクスウェル (単位)|マクスウェル]](Mx) | MTS = | FPS = | MKSG = | CGSG = | FPSG = | プランク = | 原子 = }} '''磁束'''(じそく、[[英語]]:magnetic flux、'''磁気誘導束'''とも言う)とは、ある面についてそれを通過する磁気の総量である。磁場の強さの捉え方/表し方のひとつである。電荷に対する電束と同様に、磁荷との対応が明確であり、1([[ウェーバ|Wb]])の磁荷からは同じく1([[ウェーバ|Wb]])の磁束が周囲へ常に伸びている。 磁場は、電流のもたらす磁場と電流に作用する磁場とを区別する必要があるが、磁束は、もっぱら「電流に作用する」磁場を指し、もう一方の「電流のもたらす磁場」を単に「磁場」ないしは「磁界」と呼んで区別する。 == 定義 == 磁束は空間内の任意の曲面を通り抜ける[[磁場]]の[[流束]]である。なお、[[流線]]に相当するものは[[磁束線]]である。定義上は磁束は磁束線の本数と同一とされる(ただしこれは実際に絵に書くという意味ではない[要確認])。概念定義のうえは、閉じた面についての磁束はその面に囲まれた内部の磁荷の総量と等しいとされる。ただし、現実の物理においては、磁束の起点や終点となりうる[[磁気単極子]]は今日まで見つかっていないため磁束に起点や終点はなく、磁束線は常に閉曲線であり、1個の閉局面における磁束は常にゼロである。 <!-- 数学的な間違い(計算ミスとかいうのではなく、根本的に誤解してる)が複数。 定義されてないものが唐突に出てくる。たぶん-Sというのは向きを逆につけたものなんだろうけど、 向きを反転させなきゃなんないとは限らない(普通にパラメータをとれば、反転不要だと思います)。 --> === 磁束密度との関係 === 磁束はもっぱら磁束密度で扱われる。[[向き|向き付けられた]]任意の[[曲面]] S を考える。 この曲面を通り抜ける磁束 Φ は次の式で表される<ref name="tokuoka">[[#tokuoka|徳岡 (1988)]] 166-167頁。</ref>。 {{Indent| <math>\Phi = \int_S \boldsymbol{B}\cdot d\boldsymbol{S}</math> }} ここで '''B''' は[[磁束密度]]である。d'''S''' は面積要素でその向きは曲面の法線を向く。 == 磁束の保存 == 起点や終点となりうる磁気単極子が存在しないと仮定すれば、空間内の任意の領域の境界面を通り抜ける磁束は常に 0 となる。 {{Indent| <math>\oint_{\partial V} \boldsymbol{B}\cdot d\boldsymbol{S} =0</math> }} この式に[[発散定理]]を用いれば {{Indent| <math>\nabla\cdot \boldsymbol{B} =0</math> }} が得られる。この式は[[マクスウェルの方程式]]の一つである。 == 電磁誘導の法則 == 閉回路に誘導される起電力は、その回路を境界に持つ曲面を貫く磁束の時間変化に比例する。 {{Indent| <math>V = -\frac{d\Phi}{dt}</math> }} これを[[ファラデーの電磁誘導の法則]]という。 == 磁束の量子化 == 例としてリング状の[[超伝導]]体を考えたとき、超伝導体そのものは[[マイスナー効果]]により内部に磁束が入ることは出来ないが、リングの穴の部分を通ることは可能である。しかし、この穴を通る磁束は : <math>\phi_0 = \frac{h}{2e} = 2.067~833~848 \times 10^{-15}~\text{Wb}</math>(2018[[科学技術データ委員会|CODATA]]推奨値)<ref>[[#nist|2018CODATA]]</ref> の整数倍の値しか取ることが出来ない。ここで、{{mvar|h}} は[[プランク定数]]、{{mvar|e}} は素電荷である。このように、超伝導リングを通ることができる磁束の量が離散的な値になることを「磁束の量子化」と呼び、その最小単位である {{math|''φ''{{sub|0}}}} を磁束量子と呼ぶ。磁束の源が超伝導電流であることに起因する現象であり、超伝導を特徴づける重要な特性の一つに挙げられる。リング状でなくとも、例えば第二種超伝導体の内部へ侵入した磁束は、量子化された'''磁束量子'''となる。([[量子渦]]を参照) 量子化した磁束は、1961年にディーバー、フェアバンクら<ref>[[#deaver|Deaver and Fairbank (1961)]]</ref>、及びドール、ネーバーら<ref>[[#doll|Doll and Nabauer (1961)]]</ref>によって独立に観察された。 上記の構成を入れ替え、磁束を閉じ込めたリング状の常伝導体を超伝導体で取り囲んだ場合も、常伝導体内に閉じ込められた磁束が量子化されることが知られている<ref>{{cite journal |last1 = 外村 |first1 = 彰 |date = December 2000 |title = 電子波で見る電磁界分布 【ベクトルポテンシャルを感じる電子波】 |url = https://www.journal.ieice.org/conts/kaishi_wadainokiji/200012/20001201-4.html |journal = 電子情報通信学会誌 |volume = 83 |issue = 12 |section = 4. アハラノフ・ボーム効果の実験 |access-date = 2024-04-24}}</ref>。 === ドール、ネーバーらの方法 === 直径10マイクロメートルの[[水晶]]棒側面に[[鉛]]を蒸着することで鉛製の円柱を作り、円柱が横になるようにクライオスタット内に水晶繊維で吊るす。ある外部磁場(凍結磁場){{math|''B''{{sub|''f''}}}} 中でこの円柱を[[超伝導]]転移温度以下まで冷却し、外部磁場を取り除くと、円柱に永久電流による磁束がトラップされた状態になる。この磁束の磁気モーメントを、円柱の測定磁場 {{math|''B''{{sub|''m''}}}} 下での振動周期から評価すると、磁束量子の整数倍の値しかとらない<ref>[[#ibach|Ibach, Lueth]] 292頁</ref>。 == 脚注 == {{脚注ヘルプ}} === 出典 === {{Reflist}} == 参考文献 == * {{Cite book|和書|author=徳岡善助 他|title=物理学概論 下|publisher=学術図書出版社|year=1988|isbn=4-87361-022-2|pages=166-167|ref=tokuoka}} * {{Cite book|和書|author=太田昭男|title=新しい電磁気学|publisher=培風館|year=1994|isbn=4-563-03491-6}} * {{Cite book|和書|title=[[理科年表]]|editor=[[国立天文台]]編|date=2013|第86冊|isbn=978-4-621-08606-3|ref=nenpyo}} * {{Cite web|url=http://physics.nist.gov/cgi-bin/cuu/Value?flxquhs2e|title=magnetic flux quantum|accessdate=2019-06-16|publisher=[[アメリカ国立標準技術研究所|NIST]]|ref=nist}} * {{Cite book|和書|author=H.Ibach, H. Lueth|translator=石井力,木村忠正|title=固体物理学|isbn=4-431-70760-3|ref=ibach}} * {{cite journal|author=B. S. Deaver and W. M. Fairbank|title=Experimental Evidence for Quantized Flux in Superconducting Cylinders|journal=Phys. Rev. Lett.|year=1961|volume=7|issue=2|pages=43|bibcode=1961PhRvL...7...43D|doi=10.1103/PhysRevLett.7.43|ref=deaver}} * {{cite journal|author=R. Doll and M. Nabauer|title=Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring|journal=Phys. Rev. Lett.|year=1961|volume=7|issue=2|pages=51|bibcode=1961PhRvL...7...51D|doi=10.1103/PhysRevLett.7.51|ref=doll}} == 関連項目 == * [[電磁気学]] * [[ベクトル解析]] ** [[発散 (ベクトル解析)|div]] ** [[勾配 (ベクトル解析)|grad]] ** [[回転 (ベクトル解析)|rot]] ** [[ナブラ]] {{電磁気学}} {{Normdaten}} {{DEFAULTSORT:しそく}} [[Category:電磁気学]] [[Category:物理量]] [[Category:磁気]] [[Category:物理定数|しそくりょうし]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Cite journal
(
ソースを閲覧
)
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:Indent
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Mvar
(
ソースを閲覧
)
テンプレート:Normdaten
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:物理量
(
ソースを閲覧
)
テンプレート:脚注ヘルプ
(
ソースを閲覧
)
テンプレート:電磁気学
(
ソースを閲覧
)
磁束
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報