解析接続のソースを表示
←
解析接続
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{出典の明記|date=2015年7月}} [[解析学]]において、'''解析接続''' (かいせきせつぞく、{{lang-en-short|''analytic continuation''}}) とは[[リーマン球面]] <span style="text-decoration:overline">'''C'''</span> 上の[[領域 (解析学)|領域]]で定義された[[有理型関数]]に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた[[関数 (数学)|関数]]のことである<ref>[[神保道夫]]. (2003). 複素関数入門. [[岩波書店]].</ref><ref>Ablowitz, M. J., Fokas, A. S. (2003). Complex variables: introduction and applications. Cambridge University Press.</ref><ref>複素解析 / [[ラース・ヴァレリアン・アールフォルス]]著 ; 笠原乾吉訳.</ref><ref>能代清:「解析接続入門」、共立出版 (昭和39年=1964年11月5日)</ref>。 == 定義 == ここでは、[[有理型関数]]の解析接続を定義する。[[正則関数]]に限って定義することもあるが、有理型関数は、分母分子ともに正則関数である[[分数]]で表されるような関数なので、有理型関数の解析接続の定義は、正則関数の解析接続の定義も含んでいる。正則関数で定義する場合は[[ローラン展開|ローラン級数]]の代わりに、 [[テイラー展開|テイラー級数]]を用いる。 === 関数要素 === [[リーマン球面]] <span style="text-decoration:overline">'''C'''</span> の領域 ''D'' において定義された有理型関数 ''f''(''z'') は任意の ''w'' ∈ ''D'' において[[ローラン展開]]が可能であり ''k'' を整数として :<math>f_w(z) = \sum_{n=k}^{\infty} a_n (z-w)^{n} </math> という級数と同一視できる。 :''z'' ∈ ''D'' が ''f''<sub>''w''</sub>(''z'') の収束円内にあるとき ''f''(''z'') = ''f''<sub>''w''</sub>(''z'') である。 ''f''<sub>''w''</sub>(''z'') を ''w'' を中心とする ''f''(''z'') の'''関数要素''' (''function element'') という。 ''w'' = ∞ ([[無限遠点]])の時は ''y'' = 1/''z'' として、変数を ''y'' に取り替えて級数展開を行うものとする。 領域 ''D'' において定義された[[有理型関数]] ''f''(''z''), ''g''(''z'') があり、ある一点 ''w'' ∈ ''D'' において ''f''(''z'') と ''g''(''z'') の関数要素が一致するとき、[[一致の定理]]により領域 ''D'' 全体でこの2つの関数は一致する。 :この事実によって、解析接続がうまく定義される。関数要素という言葉は[[カール・ワイエルシュトラス|ワイエルシュトラス]]によるもので、元々は、収束[[冪級数]]と収束円の組として定義されている。関数要素とは収束冪級数だけでなく、それが定義されている領域との組み合わせで意味を持つ。この領域の張り合わせによって、解析接続というものが実現できるのである。 [[画像:Analytic continuation 5.png|thumb|200px|二つの領域の共通部分の連結成分は一つとは限らない。一般に、どの重なりを用いて直接接続を行うかで、解析接続は異なる。]] === 解析接続 === ''f''<sub>''m''</sub>(''z'') は、複素平面の領域 ''D''<sub>''m''</sub> を定義域とする[[有理型関数]]とする。 ''D''<sub>1</sub> ∩ ''D''<sub>2</sub> が[[空集合|空]]でないとし、その[[連結成分]]の一つ ''P''<sub>1</sub> を取る。 ''f''<sub>1</sub> と ''f''<sub>2</sub> の ''w'' ∈ ''P''<sub>1</sub> での関数要素が等しいとき、 連結成分 ''P''<sub>1</sub> 全体で ''f''<sub>1</sub>(''z'') ≡ ''f''<sub>2</sub>(''z'') となる。このとき ''f''<sub>2</sub>(''z'') を ''f''<sub>1</sub>(''z'') の '''直接解析接続''' (''direct analytic continuation'') あるいは単に '''直接接続''' (''direct continuation'') という。 :''D''<sub>1</sub> ∩ ''D''<sub>2</sub> は単連結とは限らず、複数の連結成分よりなっていることもあり、直接接続は連結成分 ''P''<sub>1</sub> の選び方に依存する。 [[有理型関数]] ''f''<sub>1</sub>(''z'') に対し、 ''f''<sub>1</sub>(''z'') の直接接続 ''f''<sub>2</sub>(''z'') を取り、 ''f''<sub>2</sub>(''z'') の直接接続 ''f''<sub>3</sub>(''z'') を取り、 … と順に直接接続を取ってできる有理型関数の列 : ''f''<sub>1</sub>(''z''), ''f''<sub>2</sub>(''z''), ''f''<sub>3</sub>(''z''), … のことを'''解析接続''' (''analytic continuation'') といい、その集合 :{''f''<sub>''n''</sub>(''z'')|''n''∈'''N'''} を '''[[解析関数]]''' (''analytic function'') という。一般に直接接続の選び方によってできあがる解析接続は異なる。 == 例 == :[[ファイル:Analytic_continuation.gif|thumb|500px|等比級数とそれの解析接続を複素平面上で可視化したもの。左図の水色点はsを表しており、水色の円形領域は級数{{math|{{sum|k{{=}}0|∞}} s{{sup|k}} }}の収束半径を示している。<br/> 右図の連結した黄線は、{{math|{{sum|k{{=}}0|∞}} s{{sup|k}} }}の有限和{{math|{{sum|k{{=}}0|n}} s{{sup|k}} }}において、{{math|n{{=}}0}}から{{math|n{{=}}20}}までの値をプロットし、それを繋いだものである。緑点は1/1−sを表している。 sが収束半径内にあるとき、有限和の値は1/(1-s)に吸い込まれる螺旋状に変化することがわかる。sが収束半径外にあるとき、有限和の値は中心を1/(1-s)として外側に広がる螺旋状に変化することがわかる。]] :※ 以下の説明において''i'' は[[虚数単位]]とする。 [[複素数]] ''z'' を変数とし、[[総和|無限級数]]によって定義される関数 :<math>f_0(z) = \sum_{n=0}^{\infty} z^{n} = 1+z+z^2+\cdots </math> を考える。この関数は、[[収束半径]]が 1 であり :<math>g(z) = \frac{1}{1-z}</math> に[[総和|収束]]する。すなわち |''z''| < 1 の時に ''g''(''z'') に収束する。 しかしながら、 ''g''(''z'') は ''z''≠1 において定義され、 ''f''<sub>0</sub>(''z'') と定義域が異なることが分かる。 :※ 以下では見通しをよくするために ''g''(''z'') と級数を比べながら説明するが、普通は解析接続を用いるときに ''g''(''z'') のように定義域の広い関数はわかっていない。 ここで、 ''g''(''z'') を ''f''<sub>0</sub>(''z'') の収束円内の点 ''z'' = − 1/2 を中心に[[テイラー展開]]してみれば :<math>f_{-{1 \over 2}}(z) = \sum_{n=0}^{\infty} \left({2 \over 3}\right)^{n+1} \left(z+{1\over 2}\right)^{n} = {2 \over 3} + {4 \over 9} \left(z+{1\over 2}\right) + {8 \over 27} \left(z+{1\over 2}\right)^2 + \cdots </math> であり、その収束半径は (3/2) であるので |''z'' +(1/2) | < (3/2) において定義できることになる。つまり、 ''f''(''z'') から ''f''<sub>−(1/2)</sub>(''z'') に取り替えることによって定義域を拡げられることがわかる。さらに ''z'' = − 1, − 2, … でのテイラー展開を考えることにより定義域を拡げていくことができる。この操作により定義域を拡げていけば [[複素数|実部]] Re(''z'') が 1 より小さい任意の ''z'' に関して、適当な無限級数をとればその値を定義できることが分かる。 さらに ''z'' = (1 + ''i'')/2 における ''g''(''z'') の[[テイラー展開]] :<math>f_{1+i \over 2}(z) = \sum_{n=0}^{\infty} (1+i)^{n+1}\left(z-{1+i \over 2}\right)^n </math> :<math> = 1+i +2i \left(z-{1+i \over 2}\right)-2(1-i) \left(z-{1+i \over 2}\right)^2 -4 \left(z-{1+i \over 2}\right)^3 - \cdots </math> を考えると収束半径は 1/√2 である。 ''O''(''a'',''r'') によって、 ''a'' を中心とする半径 ''r'' の[[開円板]]を表すことにすると ''f''<sub>0</sub> は ''O''(0,1) において定義され、 ''f''<sub>(1+''i'')/2</sub> は ''O''((1+''i'')/2,1/√2) において定義されていることになる。この 2つの開円板の[[共通部分 (数学)|共通部分]]では ''f''<sub>0</sub>(''z'') = ''f''<sub>(1+''i'')/2</sub>(''z'') であり :<math>h(z) = \begin{cases} f_0(z) & \left(z \in O\left(0,1\right)\right),\\ f_{1+i \over 2}(z) & \left(z \in O\left({1+i \over 2},1\right)\right) \end{cases}</math> という関数を定義できる。この ''h''(''z'') は、共通部分では ''f''<sub>0</sub>(''z'') = ''f''<sub>(1+''i'')/2</sub>(''z'') の値を取り、それ以外では、定義されている方の関数の値を取る関数である。これは Re(''z'') = 1 という線を越えて、 ''f''<sub>0</sub> の定義域を拡げることができることを意味している。このように級数で表現でき、定義域が異なるが、共通部分では同じ値を取る関数を用いて定義域を拡げていく手法、あるいは、 ''f''<sub>0</sub>(''z'')に対して 上で与えたような ''h''(''z'') のように定義域を拡げた関数のことを解析接続という。 == 曲線に沿った解析接続 == [[画像:Analytic continuation 3.png|thumb|200px|左の青い領域で定義された関数要素が、右の緑の領域で定義される関数要素まで曲線に沿って解析接続される]] [[リーマン球面]] <span style="text-decoration:overline">'''C'''</span> 上の点 ''a'', ''b'' を結ぶ曲線、すなわち :φ : [0,1] → <span style="text-decoration:overline">'''C'''</span> :φ(0) = ''a'', φ(1) = ''b'' という連続関数を考え、この曲線上の全ての点に関数要素を与える。与え方は無数にあるが、任意の ''t''<sub>0</sub> ∈ [0,1] および、ある正の実数 ε > 0 に対して |''t'' − ''t''<sub>0</sub>| ≤ ε を満たす ''t'' ∈ [0,1] における関数要素が ''t''<sub>0</sub> を中心とする関数要素の直接接続となるように各点に関数要素を与える。 :要は十分近い点で定義されている関数要素同士は、互いに直接接続となるように定めるということである。 このような関数要素の族を与えることが可能なとき、''a'' を中心とする関数要素はこの曲線に沿って'''解析接続可能''' (''analytically continuable'') であるという。曲線を定めると、その曲線に沿った解析接続は一意に決まる。 :要は、与えられた曲線上に中心を持つ関数要素を次々と取っていくことで曲線に沿った解析接続ができる。 ''a'' を中心とする関数要素 ''f''<sub>''a''</sub>(''z'') が与えられたとき、 ''a'' を始点とするあらゆる連続曲線を考え、それらの曲線に沿った解析接続を行って得られる関数を'''[[ワイエルシュトラス]]の[[解析関数]]'''という。 2つの曲線 φ<sub>0</sub>(''t'') と φ<sub>1</sub>(''t'') が[[ホモトピー|ホモトープ]]であり、その[[ホモトピー]]が :''H''(''s'',''t''): [0,1] × [0,1] → <span style="text-decoration:overline">'''C'''</span> :''H''(0,''t'') = φ<sub>0</sub>(''t'') ,''H''(1,''t'') = φ<sub>1</sub>(''t'') を満たすとする。任意の (''s'',''t'') ∈ [0,1] × [0,1] に対し、 関数要素 ''F''<sub>(''s'',''t'')</sub>(''z'') が定められ、この関数要素の集合は、[[ホモトピー]]で ''s'' を任意に固定して得られる曲線 :φ<sub>''s''</sub>(''t'') = ''H''(''s'',''t'') に沿った解析接続になっているとする。適当な ''H''(0,0) の近傍で ''F''<sub>(0,0)</sub>(''z'') = ''F''<sub>(''s'',0)</sub>(''z'') (''s'' ∈ [0,1]) であるならば、''H''(0,1) の適当な近傍を取ると ''F''<sub>(0,1)</sub> = ''F''<sub>(1,1)</sub> となり終点で値が一致する。 [[Image:Imaginary log analytic continuation.png|316px|right|thumb|複素平面から負実数閉半直線をのぞいた領域上での自然対数の解析接続の虚部]] このような[[ホモトピー]]と関数要素の集合が取れない場合は、ワイエルシュトラスの[[解析関数]]は一般に[[多価関数]]となる。つまり、「関数の定義域」''S'' に穴(特異点)があるとき一般には経路の連続変形の際にそこを無視できず、ホモトープでない曲線同士では、解析接続をしていっても同じ関数要素に辿り着くとは限らない。たとえば[[自然対数]]を :<math>\log t := \int_1^t {1 \over z} dz </math> で定義するとき、''z'' = 0 の部分は[[孤立特異点|特異点]]となりこのような関数要素はとることができない。この積分は 1 から ''t'' へ到る曲線を与えることによってその値が定まる。 ''z'' = 0 を通らない ''z'' = 1 を始点とする曲線をいろいろ考えることによって得られる[[解析関数]]は[[多価関数]]となり、対数関数は複素数の範囲では[[多価関数]]になるという事実に対応している。 ==自然な境界(自然境界)== べき級数が収束半径 r を持ち、この円板内で解析函数 f を定義すると仮定する。いま収束円の上の点(円周上の点)を考えて、その点のある近傍に於いて f を解析接続できる場合はその点を'''正則''' (''regular'')、そうでない場合には'''特異'''と呼ぶ。円のすべての点が特異であればその円(円周)は'''自然な境界'''である。 より一般には、f が解析的である任意の連結な開領域に対して定義を拡張し領域の境界上の点を正則と特異に分類する。領域の境界の点がすべて特異であればそれは自然な境界であり、そのような領域は[[正則領域]]である。 <!--==Natural boundary== Suppose that a power series has radius of convergence ''r'' and defines an analytic function ''f'' inside that disc. Consider points on the circle of convergence. A point for which there is a neighborhood on which ''f'' has an analytic extension is ''regular'', otherwise ''singular''. The circle is a '''natural boundary''' if all its points are singular. More generally, we may apply the definition to any open connected domain on which ''f'' is analytic, and classify the points of the boundary of the domain as regular or singular: the domain boundary is then a natural boundary if all points are singular, in which case the domain is a ''[[domain of holomorphy]]''.--> ==出典== {{reflist}} == 関連文献 == * [https://www2.math.kyushu-u.ac.jp/~joe/math/symp/ohsawa.pdf 大沢健夫:「解析接続の問題に現れる解析と幾何」] == 関連項目 == *[[リーマン球面]] *[[リーマン面]] *[[モノドロミー行列]] *[[数列の加速法]](収束の遅い[[数列]]を収束の速い[[数列]]に変換する[[アルゴリズム]]の総称で、解析接続の類似物と見なせる) {{DEFAULTSORT:かいせきせつそく}} [[Category:複素解析]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:出典の明記
(
ソースを閲覧
)
解析接続
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報