運動量演算子のソースを表示
←
運動量演算子
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''運動量演算子'''とは、[[量子力学]]において[[ヒルベルト空間]]上の[[状態ベクトル]]に作用する[[演算子 (物理学)|演算子]]で、[[古典力学|古典的]]な[[運動量]]に対応する。 特に量子力学の形式の一つである[[波動力学]]において、座標表示された[[波動関数]]に作用する[[微分演算子]]と関係付けられる。 運動量演算子は量子力学が発展した1920年代に、[[ニールス・ボーア]]、[[アルノルト・ゾンマーフェルト]]、[[エルヴィン・シュレーディンガー]]、[[ユージン・ウィグナー]]など多くの理論物理学者によって見いだされた。 == 概要 == 量子力学における[[物理量]]は[[ヒルベルト空間]]上の[[状態ベクトル]]に作用する演算子として表されており、これに倣って運動量も演算子へと置き換えられる<ref>[[#Sakurai-1_2ed|『現代の量子力学』]] p.14</ref>。 量子力学の導入においては、通常の数(c数)と演算子(q数)とを区別するためにしばしば[[サーカムフレックス|ハット記号]]を付して表され、運動量演算子は <math>\hat{p}</math> で表される。 [[ハミルトン形式]](正準形式)の古典力学において、運動量は[[正準変数]]として特別な役割を担っており、これを反映して量子論においても特別な役割を担っている。 運動量演算子を特徴付ける基本的な性質は[[正準交換関係]]と呼ばれる関係で、位置の演算子との間に :<math>[\hat{x}, \hat{p}] \equiv \hat{x}\hat{p} -\hat{p}\hat{x} =i\hbar</math> を満たす。ここで {{mvar|ħ}} は換算[[プランク定数]]であり、{{mvar|i}} は[[虚数単位]]である。運動の自由度が2つ以上の場合は[[クロネッカーのデルタ]]を用いて :<math>[\hat{x}^a, \hat{p}_b] =i\hbar\delta^a_b</math> となる<ref>[[#Sakurai-1_2ed|『現代の量子力学』]] p.63</ref>。 波動力学において運動量演算子は :<math>\hat{p} =-i\hbar \frac{\partial}{\partial x}</math> として微分演算子と関係付けられる<ref>[[#Koide-1|小出『量子力学 I』]] p.31</ref><ref>[[#Igi-Kawai-1|猪木、川合『量子力学 I』]] p.21</ref>。すなわち座標表示された波動関数 {{math|''ψ''(''x,t'')}} に対して :<math>\hat{p} \psi(x,t) =-i\hbar \frac{\partial\psi}{\partial x}</math> と作用する。 微分演算子による表示が正準交換関係を満たすことは[[連鎖律]]により確認される。すなわち位置の演算子を作用させたのち、運動量演算子を作用させると :<math>\hat{p}(\hat{x}\psi) =-i\hbar\frac{\partial(x\psi)}{\partial x} =-i\hbar x\frac{\partial\psi}{\partial x} -i\hbar\psi =\hat{x}(\hat{p}\psi) -i\hbar\psi</math> となるので :<math>[\hat{x}, \hat{p}] \psi =\hat{x}(\hat{p}\psi) -\hat{p}(\hat{x}\psi) =i\hbar\psi</math> が確認される。 [[量子場の理論]]においては、[[第二量子化]]により場が量子化されて演算子として表される。量子場 <math>\hat\phi(x)</math> に対する運動量演算子の作用は :<math>\frac{i}{\hbar} [\hat{P}_\mu, \hat\phi(x)] =\partial_\mu\hat\phi(x)</math> として演算子の交換子積で与えられる<ref>[[#sakai|坂井『場の量子論』]] p.23</ref>。 物理量の量子化における対応と同様に :<math>P_\mu \mapsto -i\hbar\partial_\mu</math> で表される。 ==ド・ブロイ平面波からの導出== 運動量演算子とエネルギー演算子は次のように構築できる<ref name="#1">''Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles'' (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0</ref>。 ===1次元=== 1次元から出発し、[[シュレーディンガー方程式]]に[[平面波]]解を用いる。 :<math> \psi = e^{i(kx-\omega t)}</math> 空間についての1階偏微分は、 :<math> \frac{\partial \psi}{\partial x} = i k e^{i(kx-\omega t)} = i k \psi</math> [[ド・ブロイの関係式]] {{math|''p'' {{=}} {{hbar}}''k''}} より {{mvar|k}} を表すと、{{mvar|ψ}} の微分公式は次のようになる。 :<math> \frac{\partial \psi}{\partial x} = i \frac{p}{\hbar} \psi</math> このことは演算子の等価性を示している。 :<math> \hat{p} = -i\hbar \frac{\partial }{\partial x}</math> よって運動量 {{mvar|p}} は[[スカラー (数学)|スカラー]]値で、測定される粒子の運動量は演算子の固有値である。 偏微分は[[線形演算子]]であり、運動量演算子も線形である。いかなる波動関数も他の状態の[[重ね合わせ]]として表すことができるため この運動量演算子は重ね合わせられた波全体に作用するとき、それぞれの平面波成分に対して運動量の固有値を与え、運動量が重ね合わせられた波の全運動量に加えられる。 ===3次元=== 3次元での導出は、1階偏微分の代わりに[[ナブラ]]が用いられることを除いて、1次元と同じようにできる。 3次元のシュレーディンガー方程式の平面波解は次のように書ける。 :<math> \psi = e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}</math> また勾配は :<math> \begin{align} \nabla \psi &= \mathbf{e}_x\frac{\partial \psi}{\partial x} + \mathbf{e}_y\frac{\partial \psi}{\partial y} + \mathbf{e}_z\frac{\partial \psi}{\partial z} \\ & = i k_x\psi\mathbf{e}_x + i k_y\psi\mathbf{e}_y+ i k_z\psi\mathbf{e}_z \\ & = \frac{i}{\hbar} \left ( p_x\mathbf{e}_x + p_y\mathbf{e}_y+ p_z\mathbf{e}_z \right)\psi \\ & = \frac{i}{\hbar} \mathbf{\hat{p}}\psi \end{align}</math> ここで {{math|'''e'''<sub>''x''</sub>, '''e'''<sub>''y''</sub>}} と {{math|'''e'''<sub>''z''</sub>}} は3次元空間での単位ベクトルであり、 :<math> \mathbf{\hat{p}} = -i \hbar \nabla</math> この運動量演算子は位置空間に存在する。なぜなら偏微分は空間変数に対して行われるからである。 ==定義 (位置空間)== {{see also|位置空間と運動量空間}} [[電荷]]と[[スピン角運動量|スピン]]を持たない1つの粒子では、運動量演算子は位置基底で表すことができる<ref>''Quantum Mechanics Demystified'', D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546-9</ref>。 :<math>\mathbf{\hat{p}}=-i\hbar\nabla</math> ここで {{math|∇}} は[[勾配]]の演算子、{{math|{{hbar}}}} は[[ディラック定数]]、{{math|''i''}} は[[虚数単位]]である。 これは1次元空間では次のようになる :<math>\hat{p}=\hat{p}_x=-i\hbar{\partial \over \partial x}.</math> これは一般的によく見かける運動量演算子の形であるが、最も一般的な形ではない。 [[スカラーポテンシャル]] {{mvar|φ}} と[[ベクトルポテンシャル]] {{math|'''A'''}} で記述される[[電磁場]]中の荷電粒子 {{mvar|q}} では、運動量演算子は次のように置き換えなければならない<ref name="#1"/>。 :<math>\mathbf{\hat{p}} = -i\hbar\nabla - q\mathbf{A} </math> ここで[[正準運動量]]演算子は、 :<math>\mathbf{\hat{P}} = -i\hbar\nabla </math> これは電気的中性な粒子でも成り立ち、{{math|''q'' {{=}} 0}}とすれば第二項が消えて元々の演算子が得られる。 ==性質== ===エルミート性=== 物理的な量子状態に作用する運動量演算子は、(特に量子状態が[[正規化]]できるときは、)常に[[エルミート演算子]]である<ref>See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/hilbert.pdf Lecture notes 1 by Robert Littlejohn] for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See [http://bohr.physics.berkeley.edu/classes/221/1112/notes/spatialdof.pdf Lecture notes 4 by Robert Littlejohn] for the general case.</ref>。 (半無限区間 {{math|{{closed-open|0, ∞}}}} 上の量子状態のような、ある特定の人工的な状況では、エルミートな運動量演算子を作ることはできない<ref>{{cite journal|author= Bonneau,G., Faraut, J., Valent, G.|title=Self-adjoint extensions of operators and the teaching of quantum mechanics|journal=American Journal of Physics |volume=69|pages=322–331|date=2001|doi=10.1119/1.1328351|issue=3 |arxiv=quant-ph/0103153|bibcode = 2001AmJPh..69..322B }}</ref>。このことは半無限区間が並進対称性を持つことができない、より具体的に言えば[[ユニタリ作用素|ユニタリー]]な[[並進演算子 (量子力学)|並進演算子]]を持たないという事実と密接に関係している) ===正準交換関係=== {{further information|正準交換関係}} 運動量基底と位置基底を適切に用いると、次の関係が簡単に示せる。 :<math> \left [ \hat{ x }, \hat{ p } \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar. </math> [[ヴェルナー・ハイゼンベルク|ハイゼンベルク]]の[[不確定性原理]]は、どれだけ正確に1粒子の運動量と位置を同時に知ることができるかという限界点を定義する。 量子力学では、位置と運動量は[[共役変数]]となる。 == フーリエ変換と運動量表示 == 座標表示の波動関数の[[フーリエ変換]]を :<math>\tilde\psi_p(t) \equiv\mathcal{F}[\psi]_p =\frac{1}{\sqrt{2\pi\hbar}} \int \psi(x,t)\, e^{-ipx/\hbar} dx</math> とする。フーリエ変換 <math>\tilde\psi_p</math> は運動量表示された波動関数であり、運動量が {{mvar|p}} である確率密度がその二乗 <math>| \tilde\psi_p |^2</math> で与えられる。 運動量演算子を作用させた波動関数のフーリエ変換は :<math>\mathcal{F}[\hat{p}\psi]_p = -i\hbar \mathcal{F}\left[ \frac{\partial\psi}{\partial x} \right]_p =p \mathcal{F}[\psi]_p =p \tilde\psi_p(t)</math> となり、運動量表示された波動関数への運動量演算子の作用が :<math>\hat{p}\tilde\psi_p(t) =p\tilde\psi_p(t)</math> であることが示される。 == ブラ-ケット記法 == [[ブラ-ケット記法]]を用いれば、状態ベクトル <math>|\psi\rangle</math> を座標表示した波動関数は <math>\psi(x,t) =\langle x | \psi \rangle</math> と表わされる。 運動量演算子を作用させた状態ベクトル <math>\hat{p}|\psi\rangle</math> の座標表示は :<math>\langle x | \hat{p} | \psi \rangle =-i\hbar\frac{\partial}{\partial x} \psi(x,t) =-i\hbar\frac{\partial}{\partial x} \langle x | \psi \rangle</math> となる。これは座標基底 <math>\langle x |</math> に対する作用が :<math>\langle x | \hat{p} =-i\hbar\frac{\partial}{\partial x} \langle x |</math> であるとみなすことができる。 ここから便利な関係として :<math>\langle x | \hat{p} | x' \rangle =-i\hbar\frac{\partial}{\partial x} \langle x | x' \rangle =-i\hbar \frac{\partial}{\partial x} \delta(x-x')</math> が導かれる。ここで {{mvar|δ}} は[[ディラックのデルタ関数]]である。 同じ状態を運動量表示したは波動関数は <math>\tilde\psi_p(t) =\langle p | \psi \rangle</math> と表わされる。 これに対する運動量演算子の作用は :<math>\langle p | \hat{p} | \psi \rangle = p \langle p | \psi \rangle</math> であり、運動量基底 <math>\langle p |</math> に対する作用としては :<math>\langle p | \hat{p} = p \langle p |</math> である。すなわち運動量基底とは運動量演算子の[[固有ベクトル]]である。 運動量表示と座標表示がフーリエ変換で結び付けられることから、運動量基底と座標基底の内積はフーリエ変換とその逆変換の[[積分核]] :<math>\langle p | x \rangle \propto e^{-ipx/\hbar},\quad \langle x | p \rangle =\langle p | x \rangle^\dagger \propto e^{ipx/\hbar}</math> である。これは運動量演算子の作用が :<math>\langle x | \hat{p} | p \rangle =-i\hbar\frac{\partial}{\partial x} \langle x | p \rangle = p \langle x | p \rangle</math> であることから導かれる。 ==無限小並進からの導出== {{see also|ネーターの定理}} [[並進演算子 (量子力学)|並進演算子]]を {{math|''T''(''ε'')}} とする。ここで {{mvar|ε}} は並進の長さを表す。この並進演算子は次の恒等式を満足する。 :<math> T(\varepsilon) | \psi \rangle = \int dx T(\varepsilon) | x \rangle \langle x | \psi \rangle </math> これは次のようになる。 :<math>\int dx | x + \varepsilon \rangle \langle x |\psi \rangle = \int dx | x \rangle \langle x - \varepsilon | \psi \rangle = \int dx | x \rangle \psi(x - \varepsilon) </math> 関数{{mvar|ψ}}が[[解析関数|解析的]](すなわち[[複素平面]]のある領域で[[微分可能]])であると仮定すると、{{mvar|x}} について[[テイラー級数]]に展開できる。 :<math>\psi(x-\varepsilon) = \psi(x) - \varepsilon \frac{d \psi}{dx} </math> よって[[無限小]]量 {{mvar|ε}} について、 :<math> T(\varepsilon) = 1 - \varepsilon {d \over dx} = 1 - {i \over \hbar} \varepsilon \left ( - i \hbar { d \over dx} \right )</math> [[古典力学]]から分かるように、[[運動量]]は並進の生成子である。 よって並進と運動量演算子との間の関係は、 :<math> T(\varepsilon) = 1 - {i \over \hbar} \varepsilon \hat{p}</math> ここで、 :<math> \hat{p} = - i \hbar { d \over dx }. </math> ==脚注== {{reflist}} == 参考文献 == * {{Cite book|和書 |author= 小出昭一郎 |title= 量子力学 |volume= 1巻 |edition= 改訂版 |year= 1990 |series= 基礎物理学選書 |publisher= 裳華房 |isbn= 4-7853-2132-6 |ref= Koide-1 }} * {{Cite book|和書 |author= 猪木慶治、川合光 |title= 量子力学 |volume= 1巻 |year= 1994 |publisher= 講談社 |isbn= 4-06-153209-X |ref=Igi-Kawai-1 }} * {{Cite book|和書 |author= J.J.サクライ |title= 現代の量子力学 |volume= 上巻 |edition= 第2版 |year= 2014 |series= 物理学叢書 |publisher= 吉岡書店 |isbn= 978-4-8427-0364-0 |ref= Sakurai-1_2ed }} * {{Cite book|和書 |author= 坂井典佑 |title= 場の量子論 |year= 2002 |series= フィジックスライブラリー |publisher= 裳華房 |isbn= 4-7853-2212-8 |ref= Sakai }} ==関連項目== *[[電磁場の数学的記述]] *[[並進演算子 (量子力学)]] *[[相対論的波動方程式]] *[[パウリ–ルバンスキ擬ベクトル]] {{物理学の演算子}} {{DEFAULTSORT:うんとうりようえんさんし}} [[Category:量子力学]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Cite journal
(
ソースを閲覧
)
テンプレート:Further information
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Mvar
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:See also
(
ソースを閲覧
)
テンプレート:物理学の演算子
(
ソースを閲覧
)
運動量演算子
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報