量子もつれのソースを表示
←
量子もつれ
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{出典の明記|date=2021年11月}} {{Expand English|Quantum entanglement|date=2024年6月}} '''量子もつれ'''(りょうしもつれ、{{lang-en-short|quantum entanglement}})は、一般的に「量子多体系において現れる、古典確率では説明できない相関やそれに関わる現象」を漠然と指す用語である。しかし、'''量子情報理論'''においては、より限定的に「LOCC(局所量子操作及び古典通信)で増加しない多体間の相関」を表す用語である。後者は前者のある側面を緻密化したものであるが、捨象された部分も少なくない。例えば典型的な非局所効果である[[ベルの不等式]]の破れなどは後者の枠組みにはなじまない。 どちらの意味においても、複合系の状態がそれを構成する個々の部分系の[[量子状態]]の積として表せないときにのみ、量子もつれは存在する(逆は必ずしも真ではない)。この複合系の状態を'''エンタングル状態'''という。量子もつれは、'''量子絡み合い'''(りょうしからみあい)、'''量子エンタングルメント'''または単に'''エンタングルメント'''ともよばれる。 == エンタングル状態の定義 == === 純粋状態のエンタングル状態 === 部分系Aと部分系Bから構成される複合系を考える。部分系Aの[[量子状態|純粋状態]]を<math>|\phi_A\rangle</math>、部分系Bの純粋状態を<math>|\phi_B\rangle</math>と表すことにする。どのような<math>|\phi_A\rangle</math>、<math>|\phi_B\rangle</math>を用いても複合系の純粋状態<math>|\psi\rangle</math>を <math>|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle</math> の形で表すことができないとき、<math>|\psi\rangle</math>はエンタングル状態であるという。ここで、<math>\otimes</math>は[[テンソル積]]である。 === 混合状態のエンタングル状態 === 純粋状態の場合と同様に、部分系Aと部分系Bから構成される複合系を考える。A、Bの[[量子状態|混合状態]]を[[密度行列]] <math>\hat \rho_A</math>、<math>\hat \rho_B</math> で表すことにする。複合系の混合状態 <math>\hat \rho_{AB}</math> が、 <math>\hat \rho_{AB} = \sum_i p_i \hat \rho_A^{(i)}\otimes\hat \rho_B^{(i)}</math> の形で表すことができないとき、混合状態 <math>\hat \rho_{AB}</math> はエンタングル状態であるという。 == エンタングル状態の非局所相関 == 説明のため、[[スピン角運動量|スピン]]1/2をもつ2つの粒子A、Bから成る系を考える。粒子A、Bはある時刻<math>t_0</math>から<math>t_1</math>の間に[[相互作用]]し、時刻<math>t_1</math>に系全体の状態が <math>|\psi\rangle = \frac{|\uparrow_A\rangle|\downarrow_B\rangle+|\downarrow_A\rangle|\uparrow_B\rangle}{\sqrt{2}}</math> になったとする。ただし、<math>|\uparrow\rangle</math>、<math>|\downarrow\rangle</math>はスピンのz成分<math>s_z</math>の[[固有値]]1/2、-1/2に属する[[固有ベクトル]]である。時刻<math>t_1</math>以降は2つの粒子が離れていって相互作用が無くなり、以降は系全体の状態は<math>|\psi\rangle</math>のままであったとする <ref group="注"> より正確には、相互作用表示で見て不変。すなわち、相互作用が切れたのち、 全系の[[ハミルトニアン]]は粒子A及びBのハミルトニアン<math>H_A</math>、<math>H_B</math>の和になっているので、 <math>e^{i (t-t_1)H_A}</math>及び<math>e^{i (t-t_1)H_B}</math>で回転している座標系で見れば状態は変わらない。 </ref>。 <math>|\psi\rangle</math>は、エンタングル状態であることが容易に証明できる。すなわち、時刻<math>t_1</math>以降の系全体の状態は、粒子Aの状態と粒子Bの状態との[[テンソル積]]として表すことができない。 <math>t_1<t_2</math>となる時刻<math>t_2</math>に、粒子Aのスピンのz成分を測定するとしよう。[[量子力学]]が教えるところによれば、測定結果として1/2と-1/2がそれぞれ確率1/2で得られる。そして、測定結果が1/2であれば系の状態は<math>|\uparrow_A\rangle|\downarrow_B\rangle</math>に収縮し、測定結果が-1/2であれば系の状態は<math>|\downarrow_A\rangle|\uparrow_B\rangle</math>に収縮する。したがって、粒子Aに対する測定を行う以前には粒子Bのスピンz成分は不確定であるが、粒子Aのスピンz成分を測定したとき、同時に、離れた位置にある<ref group="注">「同時に」という概念は、[[特殊相対性理論]]では注意が必要である。ある観察者 a にとって事象 E<sub>1</sub> と事象 E<sub>2</sub> が同時に起こったとしても、異なる慣性系にいる観察者 b にとっては同時ではない。しかしながら、特殊相対性理論においても、2つの時空点の間が空間的に離れているか時間的に離れているかという概念は異なる慣性系から見ても変わらない。前者では直接の因果関係はありえず、後者では因果関係がありうる。よって、ここでは「同時に離れた」と書くのではなく、「空間的に離れた位置にある」と書いておけば特殊相対論の枠内でも問題がないが、簡便のため本文では「同時」という表現を使った。</ref>、粒子Bのスピンz成分は100%の確率で粒子Aの測定結果と逆向きの値になると判明する。 粒子A、Bは時刻<math>t_2</math>には離れた場所にあるのだから、粒子Aに対する測定が瞬時に粒子Bの測定結果に影響を与えるということを、2粒子間の相互作用に帰することはできない。むしろこの結果は状態<math>|\psi\rangle</math>が持つ性質として理解されるべきである。このようなエンタングル状態が持つ非局所的な相関という性質が、すなわち量子もつれである。 == 量子もつれの応用 == 量子もつれを利用すると様々な[[量子情報]]的なタスクを行うことができる。代表例は[[量子テレポーテーション]]である。量子テレポーテーションは、量子もつれと(2[[ビット]]の)古典情報の通信を用いて離れた場所に(1[[量子ビット]]の)量子状態を転送するタスクである。逆に、スーパーデンス・コーディングは量子もつれと1量子ビットの通信を用いて2ビットの古典情報を離れた場所に転送するタスクである。 == 量子もつれの撮影 == [[イギリス]]の[[グラスゴー大学]]の研究チームが画像に記録するのに成功した。 これは、[[量子コンピューター]]などの研究・開発を発展させるのに役に立つとされている。<br> [[自発的パラメトリック下方変換]]によって、光子をもつれ状態にし[[ビームスプリッター]] で光子対を分割する。光子Aの通路には通過するとランダムに位相が決まるフィルター(0°、45°、90°、135°)を設置し、超高感度ccdカメラで通過した光子の画像を撮影する。光子Bはフィルターを通過させずに進ませ、[[単一光子アバランシェダイオード]]で観測する。両方が同じタイミングで来たときに超高感度ccdカメラで撮影した画像を記録した<ref>{{Cite web|和書|url=https://wired.jp/2019/07/16/quantum-entanglement-photo/|title=「量子もつれ」の瞬間を世界で初めて画像に記録、英研究チームが成功|publisher=wired|accessdate=2019-07-17}}</ref><ref>{{Cite web||url=https://www.science.org/doi/10.1126/sciadv.aaw2563|title=Imaging Bell-type nonlocal behavior|publisher=Science Advances|accessdate=2025-02-20}}</ref>。 == 注釈 == {{Reflist|group="注"}} == 出典 == {{Reflist|}} == 関連項目 == *[[量子力学]] *[[アインシュタイン=ポドルスキー=ローゼンのパラドックス]] *[[量子コンピュータ]] *[[量子テレポーテーション]] *[[非局所性]] {{量子力学}} {{量子コンピュータ}} {{Normdaten}} {{デフォルトソート:りようしもつれ}} [[Category:量子力学]] [[Category:量子情報科学]] [[Category:物理学の未解決問題]]
このページで使用されているテンプレート:
テンプレート:Cite web
(
ソースを閲覧
)
テンプレート:Expand English
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Normdaten
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:出典の明記
(
ソースを閲覧
)
テンプレート:量子コンピュータ
(
ソースを閲覧
)
テンプレート:量子力学
(
ソースを閲覧
)
量子もつれ
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報