離散付値のソースを表示
←
離散付値
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[数学]]において、'''離散付値'''(discrete valuation)は[[可換体|体]] ''k'' 上の[[整数]][[付値]]である。つまり、[[関数 (数学)|関数]] :<math>\nu:k\to\mathbb Z\cup\{\infty\}</math> であって、以下の条件を満たす。 :<math>\nu(x\cdot y)=\nu(x)+\nu(y)</math> :<math>\nu(x+y)\geq\min\big\{\nu(x),\nu(y)\big\}</math> :<math>\nu(x)=\infty\iff x=0.</math> <math>0,\infty</math> の値しかとらない自明な付値はしばしば明示的に除外されることに注意する。 非自明な離散付値をもった体を'''離散付値体'''(discrete valuation field)と言う。 == 離散付値環と体上の付値 == 離散付値 <math>\nu</math> をもったすべての体に対して、<math>k</math> の部分環 ::<math>\mathcal{O}_k := \left\{ x \in k \mid \nu(x) \geq 0 \right\}</math> を考えることができる。これは[[離散付値環]]である。逆に、離散付値環 <math>A</math> 上の付値 <math>\nu: A \rightarrow \Z\cup\{\infty\}</math> は商体 <math>\text{Quot}(A)</math> 上の付値に拡張でき、離散付値体 <math>k</math> を与える。この体から得られる離散付値環 <math>\mathcal{O}_k</math> はちょうど <math>A</math> である。 == 例 == * 固定された素数 <math>p</math> に対し、0 でない任意の元 <math>x \in \mathbb{Q}</math> に対し <math>x = p^j\frac{a}{b}</math> と書く。ただし <math>j, a,b \in \Z</math> であって <math>p</math> は <math>a,b</math> を割らないとする。すると <math>\nu(x) = j</math> は付値になり、''p''-進付値(''p-adic'' valuation)と呼ばれる。 == 参考文献 == {{Citation | last=Fesenko | first=Ivan B. | last2=Vostokov | first2=Sergei V. | title=Local fields and their extensions | publisher=[[American Mathematical Society]] | location=Providence, RI | year=2002 | series=Translations of Mathematical Monographs | volume=121 | edition=Second | isbn=978-0-8218-3259-2 | mr=1915966 }} == 関連項目 == * [[離散付値環]] * [[付値]] * [[付値環]] {{DEFAULTSORT:りさんふち}} [[Category:可換環論]] [[Category:体論]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Citation
(
ソースを閲覧
)
離散付値
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報