X線吸収分光法のソースを表示
←
X線吸収分光法
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[File:XASEdges.svg|thumb|X線吸収スペクトルと遷移]] [[File:XASFig.jpg|thumb|X線吸収スペクトルを構成する3つの領域]] '''X線吸収分光法'''(Xせんきゅうしゅうぶんこうほう、X-ray absorption spectroscopy: XAS)は、[[物質]]の[[電子状態]]や[[局所構造]]を求めるために使われている手法である。測定対象となる物質は、[[気体]]、[[固体]]、[[液体]]、[[溶液]]などと幅広い。この実験は、通常、[[エネルギー]]可変で[[強度]]の強い[[X線]]が得られる[[シンクロトロン]]放射光施設を[[光源]]として行われる。 X線吸収の測定は、[[結晶分光器]]や[[回折格子分光器]]を用いて、入射光を[[内殻電子]]を励起することができる[[エネルギー]](おおよそ0.1-100 keVの範囲である)にあわせることで行われる。 X線吸収分光法は[[吸収分光]]の一種であり、その挙動は[[量子力学]]的な選択則に従う。もっとも強度の強い成分は、[[内殻電子]]の[[非占有軌道]]への双極子遷移(Δ l = ± 1)である。たとえば、K端において強度が強いのは1s → np遷移であるが、L<sub>3</sub>端では、2p → nd遷移である。 == X線吸収スペクトル == X線吸収は主に[[トムソン散乱]]、[[コンプトン散乱]]、[[光電効果]]によっておこる。数10keV程度まではトムソン散乱と光電効果の寄与が大きく、それより高エネルギーになるとコンプトン散乱の寄与が大きくなる。 X線吸収スペクトルのなだらかな斜面の部分は経験的に次式であらわされ、Victoreen式と呼ばれる。 :<math>\frac{\nu}{\rho}\varpropto C\lambda^3-D\lambda^4+\frac{N}{\rho}\sigma_C</math> ここでρは[[線吸収係数]]、C、Dは原子番号Zに依存し吸収端によっで大きく変わる関数、σ<sub>C</sub>はコンプトン散乱断面積、Nは単位退席中の電子数、ρは密度。 === 吸収端 === また入射X線のエネルギーを徐々に上げていくと[[係数]]が急激に上昇する現象が見られる。スペクトルの形状が急峻に上昇する崖の縁などのように見えることから'''吸収端'''(absorption edge)と呼ばれている。これは入射X線のエネルギーが内殻電子の[[結合エネルギー]]と同等になり、内殻電子が遷移することによっておきる。吸収端は、励起される内殻によってエネルギーが大きく異なるため、励起される内殻電子の[[主量子数]] n=1,2,3に対応してK端, L端, M端などと呼ばれる。 === 微細構造 === 吸収端の近傍では、振動的な微細構造が見られ、'''[[X線吸収微細構造]]'''('''XAFS''')と呼ばれる。XAFSを解析することで、元素の電子状態と局所的な化学状態がわかる。 == 測定方法 == X線吸収の測定は、[[結晶分光器]]や[[回折格子分光器]]によって物質に照射するX線のエネルギーを変化させながら吸収係数を測定することで行われる。X線吸収においては以下に示す方法によって、吸収係数の測定がおこなわれている。 === 透過法 === 透過率が高いエネルギー領域のX線、あるいは試料を薄膜などのように薄くすることが可能な場合、あるいは試料が気体であるばあいには、可視光領域の吸収測定とおなじ物質を透過させることによる光の減衰を直接観測する透過法による測定がおこなわれる。[[軟X線]]領域などの光の透過率が著しく低いエネルギー領域では、透過法による測定は困難であるため、後述する全電子収量法や全蛍光収量法による測定がおこなわれる。 === 全電子収量法 === X線の照射によって放出される[[電子]]の総量を検出することで吸収係数の測定をおこなう方法。X線の照射によって放出される[[光電子]]に加えて[[オージェ電子]]などの2次電子なども検出されているが、その総量はほぼ吸収係数に比例しているため、吸収スペクトルの測定が可能である。電子の検出には、MCP([[マイクロチャンネルプレート]])などが用いられる。この方法では、電子の脱出深さが短いために物質の表面で発生した電子が主に検出されるため、得られる測定結果は表面の寄与を強く反映する(学術誌等においては「表面敏感」と表現されていることが多い)。 === 全蛍光(発光)収量法 === X線の照射によって引き起こされる、X線領域の発光の全強度を測定する方法である。発光の検出には、MCP([[マイクロチャンネルプレート]])や[[フォトダイオード]]などが用いられる。前述した電子の場合と比較すると物質中での透過率が高いため、一般的に物質の内部を観測することが可能である(学術誌等においては「バルク敏感」であると表現されている)。発光の強度は、ほぼ吸収係数に比例しているため、吸収スペクトルの測定が可能である。 [[軟X線]]領域などの光の透過率が著しく低いエネルギー領域では、Saturation効果や自己吸収によって観測されるスペクトル形状にゆがみが生じることがあり、それらを回避する測定法や補正の方法が検討されている<ref>S. Eisebitt, T. Böske, J.-E. Rubensson, and W. Eberhardt, Determination of absorption coefficients for concentrated samples by fluorescence detection,Phys. Rev. B 47, 14103–14109 (1993)</ref><ref>Lars-Åke Näslund, David C. Edwards, Philippe Wernet, Uwe Bergmann, Hirohito Ogasawara, Lars G. M. Pettersson, Satish Myneni, and Anders Nilsson, X-ray Absorption Spectroscopy Study of the Hydrogen Bond Network in the Bulk Water of Aqueous Solutions, J. Phys. Chem. A, 109 (27), pp 5995–6002 (2005)</ref><ref>A.J. Achkar, T.Z. Regier, H Wadati, Y-J Kim, H. Zhang, D.G. Hawthorn, Bulk Sensitive X-Ray Absorption Spectroscopy Free of Self-Absorption Effects, Physical Review B, 83, 081106 (2011).</ref><ref>Y. Horikawa, H. Arai, T. Tokushima, and S. Shin, Spectral fingerprint in X-ray absorption for hydrogen-bonded dimer formation of acetic acids in solution. Chemical Physics Letters, 522(0): p. 33-37 (2012).</ref>。 == 応用分野 == X線吸収分光法は、[[原子]][[分子]]、[[固体物理学]]、[[物質化学]]、[[化学]]、[[地学]]、[[生物学]]など幅広い分野で利用されている。X線回折法と比較すると、X線吸収分光法は、局所構造に敏感であることや、元素選択性をもつことなどの特徴があることから、以下のような幅広い物質系において利用されている。 * 原子<ref>内殻空孔をもつ原子の観測に成功- "シュレーディンガーの猫状態"の生成とその観測 - http://legacy.kek.jp/ja/news/press/2008/InnerShellHole.html</ref>、分子 * [[イオン注入]]や[[不純物]]が導入された[[半導体]] * 磁性体<ref>世界で初めて超強力磁場中の軟X線分光実験を実現 http://www.spring8.or.jp/ja/news_publications/press_release/2011/110530/</ref> * 色素増感太陽電池<ref>色素増感太陽電池の色素吸着構造を分子レベルで解明 http://www.nims.go.jp/news/press/2013/10/p201310100.html</ref> * 結晶構造のひずみ * [[有機金属化学]] * [[固溶体]] * [[金属タンパク質]] * [[金属クラスター]] * [[触媒反応]]<ref>最表面分子の種類と量を追跡できる世界最速の軟X線吸収分光法を開発 -触媒反応の仕組みの解明に威力を発揮- http://legacy.kek.jp/ja/news/press/2011/08241300/</ref> * [[アモルファス]]や[[液体]] * 溶液中のイオン * [[元素分析]] * 液体の[[水]]や[[水溶液]]<ref>軟X線を活用、水溶液中の分子の電子状態を初めて観測 http://www.riken.jp/pr/press/2009/20091001/</ref> == 脚注 == <references /> {{Chem-stub}} {{デフォルトソート:えつくすせんきゆうしゆうふんこうほう}} [[Category:物質科学]] [[Category:物性物理学]] [[Category:環境化学]] [[Category:X線]]
このページで使用されているテンプレート:
テンプレート:Chem-stub
(
ソースを閲覧
)
X線吸収分光法
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報