Z検定のソースを表示
←
Z検定
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{出典の明記|date=2015年5月}} {{Expand English|Z-test|date=2024年5月}} '''Z検定'''(Zけんてい)は、[[正規分布]]を用いる[[統計学]]的[[検定法]]で、[[標本 (統計学)|標本]]の[[平均]]と[[母集団]]の平均とが統計学的にみて有意に異なるかどうかを検定する方法である。 Z検定を用いるにはいくつかの条件に適合しなければならない。最も重要なのは、Z検定は母集団の平均と[[標準偏差]]([[母数]])を用いるものであるから、これらがわかっていなければならない、ということである。標本は母集団から抽出された単純ランダム標本でなければならない。また母集団は[[正規分布]]に従うことがわかっていなければならない。ただし母集団が正規分布に従うかどうか判然としない場合でも、用いる標本のサイズが十分大きければ(一般に30から40以上ならば)よい。 Z検定は、標準テスト(全国の生徒に同じテストを行い、各[[学校]]の成績がその中でどのレベルにあるかを調べる)など、母集団が完全にわかっている場合に用いられる。しかし母集団の正しい標準偏差σを知るというのは一般には現実的でない。 母数を正確に知るのが不可能な場合には、[[スチューデントのt検定]]([[t分布]]を用いるので母数を扱う必要がない)を用いるのが現実的である。 ==方法== まず次の数値が既知であるとする: *σ(母集団の標準偏差) *μ(母集団の平均) *''x'' (標本の平均) *''n'' (標本サイズ) 次のように平均の[[標準誤差]](SE)を求める: {{Indent|<math>SE = \frac{\sigma}{\sqrt n}</math>}} 次にzスコアを次の式から求める: {{Indent|<math>z = \frac{x-\mu}{SE}</math>}} このzスコアをZ数表(平均とzスコアの間の正規分布曲線の下の面積パーセントを[[数表]]にしたもの)と比較する。これにより、zの計算値が偶然の範囲内にあるか、それとも平均と大きく離れており偶然とは考えられないかが示される。 ==関連項目== *[[偏差値]] {{統計学}} [[Category:統計検定|せつとけんてい]] [[Category:数学に関する記事|Zせつとけんてい]]
このページで使用されているテンプレート:
テンプレート:Expand English
(
ソースを閲覧
)
テンプレート:Indent
(
ソースを閲覧
)
テンプレート:出典の明記
(
ソースを閲覧
)
テンプレート:統計学
(
ソースを閲覧
)
Z検定
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報