ザイフェルト行列

提供: testwiki
2022年8月30日 (火) 07:02時点におけるimported>おいらのオイラーによる版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

ある与えられた有向ザイフェルト曲面 F 上の(整係数)一次元ホモロジー群H1(F;)中の任意の二つの元 x, y に対し、それらの纏絡数 (linking number) を対応させる線形写像 φ :H1(F;)×H1(F;)を考える(これをザイフェルト形式と呼ぶ)。ただし、ここで x, y の纏絡数とは、 x を曲面の表方向に少し浮かせたものと y (あるいは y を裏の方に浮かせたものと x )との纏絡数とする。ホモロジー群の一つの基底{ si }に関するザイフェルト形式の表現行列 VϕF の(基底{ si }に附随した)ザイフェルト行列という。したがってそれは基底の取り方に依存するが、ザイフェルト曲面 Fベッチ数β としたとき、いずれも β 次の正方行列となる。 F がある有向絡み目 L のザイフェルト曲面であるとき、 VϕL の(ザイフェルト曲面 F 及び基{ si }についての)ザイフェルト行列という。