特性関数型ゲーム

提供: testwiki
2024年11月27日 (水) 04:04時点におけるimported>私のアカウントによる版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

特性関数型ゲーム(とくせいかんすうがたゲーム、テンプレート:Lang-en-short)とは、ゲーム理論における協力ゲームの一部であり、協力ゲームの研究・応用上重要な部分である。特性関数型ゲームは特性関数によって表現される。

効用en:譲渡可能な協力ゲームでは、個々のプレイヤーへの報酬は示されない。 代わりに、特性関数は各提携 (coalition) への報酬を決定する。 標準的な仮定では、空の(誰も参加しない)提携への報酬はゼロであるとする。

特性関数型の起源は、ジョン・フォン・ノイマンオスカー・モルゲンシュテルンゼミナール本である。 同書で、提携を許す標準型ゲームを調査しているときに、提携 C を形成する場合、 C はあたかもその補提携[1] (NC) と対決する二人ゲームをプレイしているかのように行動する。C の報酬は特性値である。

今では、標準形ゲームから特性値を導く上述とは異なる複数のモデルが存在するが、 特性関数型ゲームのすべてが標準型ゲームから導かれるわけではない。

形式的には、特性関数型ゲーム(TUゲームとしても知られる)は順序対 (N,v), ここで N はプレイヤーの集合を表し、 v:2N は特性関数を表す。

引用元[2]

  1. v()=0
  2. v(ST)v(S)+v(T)

ここでSTN の任意の非交の(交わりが空集合の)部分集合である。

関数 v は以下のとおりである。 もしも S がプレイヤーの提携で、協力に合意している場合、v(S) は その提携からの総報酬の期待値を示す。S 以外のプレイヤーの行動とは独立である。

不等式に示される v優加法性は協同すればするほど総報酬が増加し、 誰(単独またはグループ)が参加しても全体の報酬が減ることはない。

特性関数型は効用譲渡性を仮定できないゲームにも一般化されている。

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

関連項目


テンプレート:ゲーム理論 テンプレート:Math-stub

en:Game_theory#Characteristic_function_form

  1. ほていけい、complementary coalition: 提携の補集合、すなわち C に不参加の全プレイヤーからなる提携
  2. Shapley value. Wikipedia: Free Encyclopedia (English version) as of 06:24, 31 October 2007