チャンドラセカール限界

提供: testwiki
2024年11月16日 (土) 00:43時点におけるimported>Bcxfubotによる版 (外部リンクの修正 http:// -> https:// (astro-dic.jp) (Botによる編集))
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

テンプレート:混同 テンプレート:Expand English チャンドラセカール限界(チャンドラセカールげんかい、テンプレート:Lang-en-short)またはチャンドラセカール限界質量テンプレート:Rとは、縮退した絶対零度電子の圧力により支えられる白色矮星質量の上限値である。1930年代にこの限界を提唱した英領インド出身の物理学者スブラマニアン・チャンドラセカールの名前に由来する。白色矮星と恒星の連星系において、恒星からの降着でガスを獲得した白色矮星の質量がこの限界を超えるとIa型超新星爆発に至るとされるテンプレート:Sfn

概説

白色矮星は、自らの質量による重力で収縮しようとする力と、構成物質のテンプレート:仮リンクとが釣り合ってその大きさを保っている。ところが、ある程度以上に天体質量が大きいと、天体としての構造を縮退圧では支えきれないため、白色矮星としては存在し得なくなる。チャンドラセカールは、その限界質量について1931年から1935年に掛けて以下の式を導き出し、その結果から太陽の1.26倍以上の質量を持った白色矮星は存在しないと結論付けたテンプレート:R

M=5.87μ2M

上式で、テンプレート:Mvar白色矮星の質量、テンプレート:Math太陽質量である。テンプレート:Mvar原子核核子の数をその原子の電子数で割った値(電子1個当たりの核子数)である。ここで テンプレート:Mvar の値として、恒星で主に合成される原子核の中で最も安定な原子核である鉄の同位体鉄56の原子核の核子の数56と、その鉄原子の電子数26を与えると

M=5.87μFe2M=5.87(56/26)2M1.26M

となる。チャンドラセカールは、この先駆的な研究が評価されて1983年ノーベル物理学賞を受賞している。

電子の平均分子量を2、白色矮星内部の温度をゼロと仮定したとき、チャンドラセカール限界質量は太陽質量の1.46倍程度となるがテンプレート:Sfn、実際の白色矮星はガスが圧縮されて熱を持っているため、この質量に到達する前のおよそ1.38Mで核融合反応が始まってIa型超新星として爆発するものと考えられているテンプレート:Sfnテンプレート:R

Ia型超新星

テンプレート:See also Ia型超新星は、連星をなす白色矮星が伴星からのガス吸収により質量がチャンドラセカール限界を越えたために水素の核融合反応が暴走し超新星となったものである。よって質量は一定となり光度も等しくなると考えられ、見かけ上の明るさから距離を割り出せるため標準光源として利用されているテンプレート:R

しかしながら、SN 2003fgSN 2006gzSN 2007ifSN 2009dcのように、明るすぎる特異なIa型超新星も複数見つかっておりテンプレート:R、如何なるメカニズムで白色矮星がチャンドラセカール限界を超える質量を持てるのかについては未だ十分に解明されていないテンプレート:R。超高速の自転による遠心力に因って重力が減じられているとする説テンプレート:R、強力な磁場で支えられているとする説などがあるテンプレート:R

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

参考文献

関連項目

外部リンク

テンプレート:Astro-stub テンプレート:Physics-stub テンプレート:Normdaten