ファイル:Relation1011.svg

提供: testwiki
ナビゲーションに移動 検索に移動
元のファイル (SVG ファイル、384 × 280 ピクセル、ファイルサイズ: 7キロバイト)

このファイルはウィキメディア・コモンズのものであり、他のプロジェクトで使用されている可能性があります。 ウィキメディア・コモンズでのファイル解説ページにある説明を以下に示します。

概要

This Venn diagram is meant to represent a relation between


Set theory: The subset relation

The relation tells, that the set is empty:    =

In written formulas:

The relation tells, that the set is empty:   

Under this condition, several set operations, not equivalent in general, produce equivalent results.
These equivalences define the subset relation:

Venn diagrams written formulas
       =             
       =             
       =             
       =             
       =             
       =             
       =             
       =             

The sign tells, that two statements about sets mean the same.
The sign = tells, that two sets contain the same elements.


Propositional logic: The logical implication

The relation tells, that the statement is never true:   

In written formulas:

The relation tells, that the statement is never true:   

Under this condition, several logic operations, not equivalent in general, produce equivalent results.
These equivalences define the logical implication:

Venn diagrams written formulas
                   
                   
                   
                   
                   
                   
                   
                   

Especially the last line in this table is important:
The logical implication tells, that the material implication is always true.
The material implication is the same as .
Note: Names like logical implication and material implication are used in many different ways, and shouldn't be taken too serious.

The sign tells, that two statements about statements about whatever objects mean the same.
The sign tells, that two statements about whatever objects mean the same.



Important relations
Set theory: subset disjoint subdisjoint equal complementary
Logic: implication contrary subcontrary equivalent contradictory


Operations and relations in set theory and logic

 
c
          
A = A
1111 1111
 
Ac  Bc
true
A ↔ A
 
 B
 
 Bc
AA
 
 
 Bc
1110 0111 1110 0111
 
 Bc
¬A  ¬B
A → ¬B
 
 B
 B
A ← ¬B
 
Ac B
 
A B
A¬B
 
 
A = Bc
A¬B
 
 
A B
1101 0110 1011 1101 0110 1011
 
Bc
 ¬B
A ← B
 
A
 B
A ↔ ¬B
 
Ac
¬A  B
A → B
 
B
 
B =
AB
 
 
A = c
A¬B
 
 
A =
AB
 
 
B = c
1100 0101 1010 0011 1100 0101 1010 0011
¬B
 
 
 Bc
A
 
 
(A  B)c
¬A
 
 
Ac  B
B
 
Bfalse
 
Atrue
 
 
A = B
Afalse
 
Btrue
 
0100 1001 0010 0100 1001 0010
 ¬B
 
 
Ac  Bc
 B
 
 
 B
¬A  B
 
AB
 
1000 0001 1000 0001
¬A  ¬B
 
 
 B
 
 
A = Ac
0000 0000
false
A ↔ ¬A
A¬A
 
These sets (statements) have complements (negations).
They are in the opposite position within this matrix.
These relations are statements, and have negations.
They are shown in a separate matrix in the box below.


この著作物は、完全に常識的な情報から構成され創作性を欠くために、著作権発生の資格がなく、故にパブリックドメインの状態にあります。

キャプション

このファイルの内容を1行で記述してください

このファイルに描写されている項目

題材

6,969 バイト

126721ea8e2df964530259b2f565e4672d8691c6

ファイルの履歴

過去の版のファイルを表示するには、その版の日時をクリックしてください。

日時サムネイル寸法利用者コメント
現在の版2010年5月7日 (金) 23:462010年5月7日 (金) 23:46時点における版のサムネイル384 × 280 (7キロバイト)wikimediacommons>Watchducklayout change

以下のページがこのファイルを使用しています: