ピアス・バーコフの予想

提供: testwiki
ナビゲーションに移動 検索に移動

ピアス・バーコフの予想 (Pierce-Birkhoff conjecture) は抽象代数学において,いかなる区分連続多項式も有限個の多項式の最小値の最大値として表現できるとする予想。

解説

1956年のガレット・バーコフとリチャード・ピアスのピアス・バーコフ環を導入する論文において,厳密でない形で最初に述べられた。

1960年代前半にf-環の研究に取り組んだメルヴィン・ヘンリクセンとジョン・イスベルによって現代的で厳密な予想が述べられた.その主張は次のようなものである.

任意の区分連続多項式f:nに対して多項式の有限集合 gij[x1,,xn] が存在して
f=supiinfj(gij)が成り立つ.[1]

n = 1, 2 の場合については,ルイ・マエによって証明されている.[2]

脚注

参考