九点円

提供: testwiki
ナビゲーションに移動 検索に移動
九点円

九点円(きゅうてんえん、テンプレート:Lang-en-short)は、三角形において特定の9個の点を通るの名称である。発見した人の名前から、オイラー円(テンプレート:Lang-en-short)・フォイエルバッハ円(テンプレート:Lang-en-short)とも呼ばれる[1]

概要

九点円

九点円は三角形ABCの以下の9個の点を通るテンプレート:Sfn

  • 3辺の中点(D、E、F)
  • 3頂点から対辺に下ろした垂線の足(G、H、I)
  • 垂心と3頂点の中点(J、K、L)

九点円の中心Nはオイラー線上の垂心と外心の中点であり、半径は外接円の半径テンプレート:Mvarの半分テンプレート:Sfracであるテンプレート:Efn

歴史

三角形上の6個の点(上述の点のうち辺上にあるもの)を通る円の存在をオイラーが1765年に証明していたともいわれる[1]

九点円が三角形上の6個の点に加えて残りの3点を通ることは、フランスのジャン=ヴィクトル・ポンスレシャルル・ブリアンションによって1821年に証明された。その翌年の1822年に、ドイツのカール・フォイエルバッハが同じ円が三角形の内接円と傍接円に接することも含めてモノグラフで証明を発表したテンプレート:Sfn。さらにその後の1842年に、フランスのオルリー・テルケムフォイエルバッハの定理の解析的な証明を与え、この円を九点円(テンプレート:Lang-fr-shortテンプレート:Lang-en-short)と命名した。この円は六点円とも呼ばれていたが、現在六点円は三角形上の別の円を指す名称となっている。

証明

九点円
九点円

右図で四角形ELMGを作る。中点連結定理より、EG, LM, BCは平行となり、EL, AI, GMも平行となる。AI, BCは垂直となる。以上より、四角形ELMGは長方形で、その4つの頂点は同一円周Γ上にある。したがって、この長方形ELMGの対角線EM, LGは、円Γの直径となる。角LJGは90゜だから、JはLGを直径とする円Γ上にあることが分かる。同様にHもEMを直径とする円Γ上にある。

次に、四角形KLFGについて同様に議論すると、四角形KLFGは長方形となる。したがって、その4つの頂点は同一円周Γ'上にあり、IはKFを直径とする円Γ'上に, JもLGを直径とする円Γ'上にあることが分かる。

しかし、LGを直径とする円は一つしかないので、上記の二つの円Γ, Γ'は一致する。

以上より、9点が同一円周Γ上にあることが分かるテンプレート:Sfnテンプレート:Sfn

関連する性質

フォイエルバッハの定理

フォイエルバッハは、1822年に以下の定理を証明しているテンプレート:Sfnテンプレート:Sfnテンプレート:Math theorem この定理は「フォイエルバッハの定理」と呼ばれる、九点円に関する最も有名な定理のひとつである。

九点円と内接円の接点をフォイエルバッハ点と呼ぶテンプレート:Sfn

この定理は、ロジャースの定理や、ハートの定理フォントネーの定理などに一般化されている。他にも、ラウル・ブリカールフランク・モーリーなどがこの定理の拡張について述べているテンプレート:Sfn

その他の性質

他に以下のような性質がある。

また、九点円の定理から以下のことも導かれる。

脚注

テンプレート:脚注ヘルプ

注釈

テンプレート:Notelist

出典

テンプレート:Reflist

参考文献

外部リンク