ヘヴィサイドの展開定理のソースを表示
←
ヘヴィサイドの展開定理
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
'''ヘヴィサイドの展開定理'''(ヘヴィサイドのてんかいていり、{{Lang-en-short|Heaviside's expansion theorem}}<ref>{{Harv|一松 ほか|1979|p=1066}}</ref>)は、ある種の[[関数 (数学)|関数]]の[[ラプラス逆変換]]を与える[[定理]]である。[[オリヴァー・ヘヴィサイド]]はイギリスの電気技師。[[有理関数]]に関するもののみを指す場合が多いが、より一般の[[有理型関数]]に対する主張へ拡張される<ref>{{Harv|一松 ほか|1979|p=548}}</ref>。以下では、有理関数のみ扱うものとする。 == 概要 == ''P''(''s''), ''Q''(''s'') は共通因子を持たない[[実数]]係数[[多項式]]で、次数は ''P'' の方が小さいとし、有理関数 ''F''(''s'') = ''P''(''s'') / ''Q''(''s'') のラプラス変換による原像を求めたいものとする。[[代数学の基本定理]]より、分母 ''Q''(''s'') は[[複素数]]の範囲で一次式の積に分解できて :<math>F(s)=\frac{P(s)}{(s-a_1)^{n_1} \cdots (s-a_r)^{n_r}}</math> となる。これを[[部分分数分解]]すれば :<math>F(s)=\sum_{i=1}^r \sum_{j=1}^{n_i} \frac{A_{ij}}{(s-a_i)^j}</math> の形になる。ここに、各係数は :<math>A_{ij}=\frac{1}{(n_i-j)!} \lim_{s \to a_i} \frac{d^{n_i-j}}{ds^{n_i-j}}((s-a_i)^{n_i}F(s))</math> で与えられる。各部分分数の原像は :<math>\mathcal{L}^{-1}\left[ \frac{A}{(s-a)^n} \right] = \frac{A}{(n-1)!}t^{n-1}\exp(at)</math> で与えられるので、''F''(''s'') の原像が求まる。 以上より、有理関数のラプラス逆変換は理論的には求まるが、計算しやすい[[公式]]の形で与えられたものを「展開定理」と称することが多い。その式の形は文献によって多少の差異があるが、本質的には同じものである。 ''Q''(''s'') が虚根を持つ場合、一旦は[[虚数]]が現れるが、[[オイラーの公式]]を用いて[[三角関数]]に変形すれば、実関数の範囲で原像が求まる。計算上は、複素数の範囲で一次式に分解するのではなく、実数の範囲で[[高々 (数学)|高々]]二次式にまで分解しておき、 :<math>\mathcal{L}^{-1}\left[ \frac{\omega}{(s-a)^2+\omega^2} \right] = \exp(at) \sin (\omega t)</math> :<math>\mathcal{L}^{-1}\left[ \frac{s-a}{(s-a)^2+\omega^2} \right] = \exp(at) \cos (\omega t)</math> などを用いる方が実践的である場合もある。 == 分母が単根のみを持つ場合 == 分母が単根のみを持つ有理関数 :<math>F(s)=\frac{P(s)}{Q(s)}=\frac{P(s)}{(s-a_1) \cdots (s-a_r)}</math> の原像は :<math>\mathcal{L}^{-1}[F(s)]=\sum_{i=1}^r \frac{P(a_i)}{Q'(a_i)} \exp(a_i t)</math> で与えられる。''Q''′(''a''<sub>''i''</sub>) は、より具体的には :<math>Q'(a_i) = \prod_{j \neq i} (a_i-a_j)</math> として計算できる。 == 分母が重根を持つ場合 == 分母が''n''重根 ''a'' を持つ有理関数 :<math>F(s)=\frac{P(s)}{Q(s)}=\frac{\phi(s)}{(s-a)^n}=\sum_{j=1}^n \frac{A_j}{(s-a)^j}+R(s)</math> に対しては、 :<math>A_j=\frac{1}{(n-j)!} \lim_{s \to a} \frac{d^{n-j}}{ds^{n-j}}((s-a)^nF(s))</math> であるから、 :<math>\mathcal{L}^{-1}[F(s)]=\exp(at)\sum_{j=1}^n \frac{\phi^{(n-j)}(a)}{(n-j)!(j-1)!}t^{j-1}+\mathcal{L}^{-1}[R(s)]</math> が成り立つ。右辺第1項は :<math>\frac{1}{(n-1)!}\lim_{s \to a} \frac{d^{n-1}}{ds^{n-1}}(\phi(s)\exp(st))</math> と同じものである。 == 脚注 == {{脚注ヘルプ}} {{reflist|2}} == 参考文献 == *{{Cite book|和書|editor=[[一松信]] ほか編|year=1979|month=11|title=新数学事典|publisher=[[大阪書籍]]|isbn=4-7548-2009-6|ref={{Harvid|一松 ほか|1979}}}} == 外部リンク == *{{高校数学の美しい物語|title=ヘビサイドの展開定理|urlname=heaviside}} *{{PDFlink|[http://izumi-math.jp/sanae/MathTopic/pdf/heaviside.pdf Heaviside の展開定理]}} - 数学玉手箱 *{{PDFlink|[http://minami106.web.fc2.com/math/heaviside.pdf 部分分数分解のやりかた]}} {{DEFAULTSORT:へういさいとのてんかいていり}} [[Category:解析学の定理]] [[Category:数学に関する記事]] [[Category:数学のエポニム]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Harv
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:PDFlink
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:脚注ヘルプ
(
ソースを閲覧
)
テンプレート:高校数学の美しい物語
(
ソースを閲覧
)
ヘヴィサイドの展開定理
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報