レイリー・リッツ法のソースを表示
←
レイリー・リッツ法
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{翻訳直後|[[:en:Special/Permalink/1169630995|en: Rayleigh–Ritz method]]|date=2023年9月}} '''レイリー・リッツ法'''(レイリー・リッツほう、{{Lang-en-short|Rayleigh–Ritz method}})は、[[固有値と固有ベクトル|固有値問題]]に対する[[数値線形代数|数値]]的[[近似アルゴリズム|近似解法]]の一つ。[[ジョン・ウィリアム・ストラット (第3代レイリー男爵)|レイリー卿]]と[[ヴァルター・リッツ]]に名をちなむ。[[物理学]]上の[[境界値問題]]の解法として考案された。 [[固有値と固有ベクトル]]の近似をともなう全ての問題に応用でき、分野によってしばしば別名で呼ばれる。[[量子力学]]では、系を構成する粒子は[[ハミルトニアン]]を用いて記述されるが、{{仮リンク|リッツ法|en|Ritz method}}では[[仮設 (数学)|試行波動関数]]を用いて最低エネルギー固有値に対応する[[固有関数]]を近似する。[[有限要素法]]の文脈では、数学的に等価な[[アルゴリズム]]が一般に{{仮リンク|ガラーキン法|en|Galerkin method|label=リッツ・ガラーキン法}}と呼ばれる。[[機械工学]]および[[構造工学]]では[[固有振動]]モードおよび[[共鳴]]周波数を近似する手法としてレイリー・リッツ法およびリッツ法という用語が用いられることが多い。 == 名称 == 本手法は[[1908年]]から[[1909年]]にかけて[[ヴァルター・リッツ]]が発表したもので、'''リッツ法'''と呼ぶべきであるという主張もある<ref name="Leissa">{{Cite journal|last=Leissa|first=A.W.|year=2005|title=The historical bases of the Rayleigh and Ritz methods|url=https://www.sciencedirect.com/science/article/abs/pii/S0022460X05000362|journal=Journal of Sound and Vibration|volume=287|issue=4–5|pages=961–978|bibcode=2005JSV...287..961L|doi=10.1016/j.jsv.2004.12.021}}</ref><ref name="Ilanko">{{Cite journal|last=Ilanko|first=Sinniah|year=2009|title=Comments on the historical bases of the Rayleigh and Ritz methods|journal=Journal of Sound and Vibration|volume=319|issue=1–2|pages=731–733|bibcode=2009JSV...319..731I|doi=10.1016/j.jsv.2008.06.001}}</ref>。A. W. Leissa<ref name="Leissa" />によれば、レイリー卿は[[1911年]]にリッツの業績を顕彰する論文を書いたが、彼自身が書籍他の刊行物において本手法をすでに何度も用いていたと述べている。後に異論も出たもののこの主張にくわえ、[[射影]]に単一ベクトルを用いる[[自明性 (数学)|自明]]な場合、本手法は[[レイリー商]]の計算に帰着するという事実もあり、異論もあるもののレイリー・リッツ法という名称が現在まで用いられている。S.Ilanko<ref name="Ilanko" />は[[リヒャルト・クーラント]]を引いて、レイリー卿とヴァルター・リッツがそれぞれ独立に、[[偏微分方程式]]の[[境界値問題]]と[[変分法|変分]]問題の等価性を活用し、有限のパラメータを決定すればよい極値問題で変分法を置き換えるというアイデアを独自に考案したとする。詳細については、{{仮リンク|リッツ法|en|Ritz method}}の項を参照されたい。皮肉なことに、後にこの手法はより単純でより一般的な[[射影作用素|正射影]]を用いるよう改良され、{{仮リンク|ボリス・ガラーキン|en|Boris Galerkin}}に名を因んで{{仮リンク|ガラーキン法|en|Galerkin method}}もしくはリッツ・ガラーキン法と呼ばれる。 == 行列の固有値問題への適用 == [[数値線形代数]]において、'''レイリー・リッツ法'''は一般的<ref name="TrefethenIII19972">{{cite book |last1=Trefethen |first1=Lloyd N. |last2=Bau, III |first2=David |title=Numerical Linear Algebra |url=https://books.google.com/books?id=JaPtxOytY7kC |year=1997 |publisher=SIAM |isbn=978-0-89871-957-4 |page=254}}</ref>にサイズ<math>N</math>の[[正方行列]]<math> A \in \mathbb{C}^{N \times N}</math>についての[[固有値と固有ベクトル|固有値問題]]<math display="block"> A \mathbf{x} = \lambda \mathbf{x}</math>の近似解を得るために用いられる。まず、行列<math> A</math>はより小さなサイズの行列へと射影される。射影は、その列が[[正規直交系]]をなす射影行列<math> V \in \mathbb{C}^{N \times m} </math>により行われる。行列版のレイリー・リッツ法は最も単純で、以下のように書き下せる。 # <math> m \times m </math>行列<math> V^* A V </math>を計算する。ここで、<math>V^*</math>は<math>V</math>の[[随伴行列|複素共役転置行列]]とする。 # 固有値問題<math> V^* A V \mathbf{y}_i = \mu_i \mathbf{y}_i</math>を解く。 # リッツベクトル<math>\tilde{\mathbf{x}}_i = V \mathbf{y}_i</math>およびリッツ値<math>\tilde{\lambda}_i=\mu_i</math>を計算する # リッツ対と呼ばれる<math>(\tilde{\lambda}_i,\tilde{\mathbf{x}}_i)</math>を元の行列<math>A</math>の固有値問題の近似解として出力する。 もし、行列<math> V \in \mathbb{C}^{N \times m} </math>の列を正規直交基底として張られる[[線型部分空間]]が行列<math>A</math>の固有ベクトルに近い<math> k \leq m </math>個のベクトルを含んでいれば、上記のレイリー・リッツ法はそれら固有ベクトルをよく近似する<math>k</math>個のリッツベクトルを与える。各リッツ対の精度は、容易に計算できる量<math> \| A \tilde{\mathbf{x}}_i - \tilde{\lambda}_i \tilde{\mathbf{x}}_i\|</math>により評価できる。 最も簡単な<math>m = 1</math>の場合、<math> N \times m </math>行列<math>V</math>は[[単位ベクトル|単位列ベクトル]]<math>v</math>、行列<math> V^* A V </math>は[[レイリー商|レイリー商<math>\rho(v) = v^*Av/v^*v</math>]]と一致するスカラーとなり、固有値問題の唯一の解は<math>y_1 = 1, \mu_1 = \rho(v)</math>、唯一のリッツベクトルは<math>v</math>それ自体となる。したがって、<math>m = 1</math>の場合、レイリー・リッツ法はレイリー商の計算に帰着する。 別の有用なレイリー商とのつながりとして、各レイリー対<math>(\tilde{\lambda}_i, \tilde{\mathbf{x}}_i)</math>に対して<math>\mu_i = \rho(v_i)</math>が成り立ち、したがってリッツ値は対応するレイリー商の理論から導かれるいくつかの性質をもつことが上げられる。たとえば、<math>A</math>が[[エルミート行列]]のとき、そのレイリー商は(したがってリッツ値も)実数値をとり、<math>A</math>の最小固有値と最大固有値の間の[[閉区間]]におさまる。 === 例 === 行列<math display="block">A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}</math>の固有値は<math>1, 2, 3</math>であり、それぞれに対応する固有ベクトルは以下のとおりである。<math display="block">\mathbf x_{\lambda=1} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf x_{\lambda=2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf x_{\lambda=3} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.</math>ここで、<math display="block">V = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}</math>とすると、<math display="block">V^* A V = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}</math>の固有値は<math>1, 3</math>でありそれぞれに対応する固有ベクトルは以下のとおりとなる。<math display="block">\mathbf y_{\mu=1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf y_{\mu=3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}</math>したがってリッツ値は<math>1, 3</math>、リッツベクトルは以下のように求まる。<math display="block">\mathbf \tilde{x}_{\tilde{\lambda}=1} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf \tilde{x}_{\tilde{\lambda}=3} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}</math>この例で与えられた<math>V</math>を用いると、リッツベクトルは<math>A</math>の固有ベクトルのうち2つと完全に一致しており、リッツ値も3つの固有値のうち2つと完全に一致している。この例において近似解が厳密解と一致したのは、行列<math>V</math>の[[列空間]]が2つの固有ベクトル<math>\mathbf x_{\lambda=1}</math>および<math>\mathbf x_{\lambda=3}</math>によって張られる線形部分空間と一致していたからと説明される。 == 行列の特異値問題への適用 == 数値線形代数において、打ち切り[[特異値分解]]問題に対してもレイリー・リッツ法を適用することができる。これにより、サイズ<math>M \times N</math>の行列<math> M \in \mathbb{C}^{M \times N}</math>の与えられた線形部分空間内の左特異ベクトルおよび右特異ベクトルを近似的に求める問題を固有値問題に帰着させることができる。 === 正規行列を用いる場合 === 特異値<math>\sigma</math>と、それに対応する左特異ベクトル<math>u</math>と右特異ベクトル<math>v</math>は<math>M v = \sigma u</math>および<math>M^* u = \sigma v</math>により定義される。左右どちらかの特異ベクトルおよび対応する特異値の集合を近似的に求めるには、エルミート[[正規行列]]<math> M^* M \in \mathbb{C}^{N \times N}</math>または<math> M M^* \in \mathbb{C}^{M \times M}</math>のどちらか小さい方に対してナイーブにレイリー・リッツ法を適用すればよい。もう片方の特異ベクトルは単純に<math>u = Mv / \sigma</math>または<math>v = M^* u / \sigma</math>のように行列をかけて特異値で割れば得られる。しかし、割り算は特異値がゼロもしくはそれに近いとき不安定となる。 別のアプローチとして、サイズ<math>N \times N</math>の正規行列<math> A = M^* M \in \mathbb{C}^{N \times N}</math>に対する、<math>N \times m</math>正規直交行列<math> W \in \mathbb{C}^{N \times m} </math>を用いたレイリー・リッツ法を適用すると、<math>m \times m</math>行列<math display="block"> W^* A W = W^* M^* M W = (M W)^* M W</math>に対する固有値問題を解くことになるが、これは<math>N \times m</math>行列<math>M W</math>についての特異値問題とみなせることを活用する方法がある。この見方により左右両方の特異ベクトルを同時に得ることが以下のようにして可能となる。 # <math> N \times m </math>行列<math> M W </math>を計算する。 # [[:en:Singular_value_decomposition#Thin_SVD|Thin-SVD]]{{訳語疑問点|date=2023年9月}}<math> M W = \mathbf {U} \Sigma \mathbf V_h</math>を解き、<math>N \times m</math>行列<math>\mathbf U</math>、<math>m \times m</math>[[対角行列]]<math>\Sigma</math>、<math>m \times m</math>行列<math>\mathbf {V}_h</math>を得る。 # リッツ左特異ベクトル<math>U = \mathbf U</math>とリッツ右特異ベクトル<math>V_h = \mathbf {V}_h W^*</math>を計算する。 # リッツ特異トリプレットと呼ばれる[[タプル|三つ組]]<math>U, \Sigma, V_h</math>が、元の行列<math>M</math>の打ち切り特異値分解問題の行列<math>W</math>の列空間上における近似解である。 このアルゴリズムは、固有値問題ソルバ(例:{{仮リンク|LOBPCG|en|LOBPCG}})から出力された行列<math>W</math>に対する後処理として実行することができる。 ==== 例 ==== 行列<math display="block">M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}</math>の正規行列は<math display="block">A = M^* M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 16 \\ \end{bmatrix}</math>また特異値は<math>1, 2, 3, 4</math>、対応するThin-SVDは以下のように求まる。<math display="block">A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},</math>ここで左側の行列の列は行列<math>A</math>の左特異ベクトルの完全集合をなし、真ん中の対角行列の対角要素は特異値、右側の行列の列は右特異ベクトルの転置となっている(ただし、転置しても元と変わらない)<math display="block"> \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}^* \quad = \quad \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} </math>ここで、特異値1、2に対応する2つの右特異ベクトル厳密解 <math display="block">\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}</math> により張られる空間を列空間とする行列、 <math display="block">W = \begin{bmatrix} 1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}</math> を導入する。 上記アルゴリズムのステップ1に従い、次の行列を得る。<math display="block">MW = \begin{bmatrix} 1 / \sqrt{2} & 1 / \sqrt{2} \\ \sqrt{2} & -\sqrt{2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}</math>さらに、ステップ2に従い、thin-SVD<math> M W = \mathbf {U}{{\Sigma }}\mathbf {V}_h</math>を解くと以下を得る。<math display="block"> \mathbf {U} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf {V}_h = \begin{bmatrix} 1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2} \end{bmatrix} </math>したがって、<math>\Sigma</math>から特異値として2と1が得られ、<math>\mathbf {U}</math>から対応する左特異ベクトル<math>u</math>として<math>[0, 1, 0, 0, 0]^*</math>と<math>[1, 0, 0, 0, 0]^*</math>が得られた。これら二つのベクトルは<math>W</math>の列空間を張っており、与えらえれた<math>W</math>による近似解が厳密解と一致する理由を説明する。 最後に、ステップ3に従い<math>V_h = \mathbf {V}_h W^*</math>を計算すると以下を得る。<math display="block">\mathbf {V}_h = \begin{bmatrix} 1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2} \end{bmatrix} \, \begin{bmatrix} 1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\ 1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}</math>したがって右特異ベクトル<math>v</math>は<math>[0, 1, 0, 0]^*</math>および<math>[1, 0, 0, 0]^*</math>である。このうち前者が<math>M v = \sigma u</math>を満たすことは以下のように確かめられる。<math display="block"> \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \, 2 \, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} </math>また、<math>M^* u = \sigma v</math>を満たすことも以下のように確かめられる。<math display="block"> \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \, 2 \, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} </math>このように、行列<math>W</math>の列空間が右特異ベクトルの厳密解により張られる空間と一致するとき、それら右特異ベクトルと、対応する左特異ベクトルおよび特異値の厳密解が得られる。任意の行列<math>W</math>に対しては、レイリー・リッツ法の意味で最適な特異値分解が近似解として求まる。 == 関連項目 == * {{仮リンク|リッツ法|en|Ritz method}} * [[レイリー商]] * {{仮リンク|アーノルディの反復法|en|Arnoldi iteration}} == 出典 == {{Reflist}} == 外部リンク == * [https://web.archive.org/web/20081010161336/http://www.math.nps.navy.mil/~bneta/4311.pdf Course on Calculus of Variations, has a section on Rayleigh–Ritz method]. {{DEFAULTSORT:れいりいりつつほう}} [[Category:力学系]] [[Category:数値微分方程式]] [[Category:数学に関する記事]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Cite journal
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:仮リンク
(
ソースを閲覧
)
テンプレート:翻訳直後
(
ソースを閲覧
)
テンプレート:訳語疑問点
(
ソースを閲覧
)
レイリー・リッツ法
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報