広田の方法のソースを表示
←
広田の方法
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{differential equations}} '''広田の方法'''(ひろたのほうほう、{{lang-en-short|Hirota's method}})は、[[ソリトン]]方程式の[[ソリトン]]解を求めるための方法の一つで、簡便にして強力なことで知られる。[[広田良吾]]が考案した。'''双線形化法''' (bilinearization method)、'''直接法''' (direct method) とも呼ばれる。 {{math|Log}}微分などによる従属変数の変数変換により、非線形偏微差分方程式を双線形方程式に変換する。変換後の従属変数はしばしば {{mvar|τ}} 関数と呼ばれる。{{mvar|τ}} 関数は[[行列式]]またはパフィアン (Pfaffian) で、双線形方程式はPlucker関係式である。 [[ソリトン]]方程式の可積分性を保ったまま方程式の独立変数を離散化する際にも重要な役割を果たしている。 ==広田微分== ===定義=== 二つの関数の組 {{math|''f''(''x'', ''t'')}}, {{math|''g''(''x'', ''t'')}} に対して、 :<math> D_x{}^{m}D_t{}^{n} f \cdot g= \left. \biggl ( \frac{\partial}{\partial x}- \frac{\partial}{\partial x'} \biggr )^m \biggl ( \frac{\partial}{\partial t}- \frac{\partial}{\partial t'} \biggr )^n f(x, t)g(x',t') \right |_{x'=x, t'=t} </math> で定義される[[二項演算]]を'''[[広田微分]]'''と呼ぶ。演算子 {{mvar|D<sub>x</sub>}}, {{mvar|D<sub>t</sub>}} を'''広田のD演算子'''と呼ぶ。 実際の広田微分の計算例は次のようになる。 *<math> D_x f \cdot g=f_x g-fg_x </math> *<math> D_x^{\,2} f \cdot g = f_{xx}g - 2f_xg_x+fg_{xx} </math> *<math> D_x^{\,3} f \cdot g = f_{xxx}g - 3f_{xx}g_x + 3f_{x}g_{xx} - f g_{xxx} </math> *<math> D_x^{\,4} f \cdot g = f_{xxxx}g- 4f_{xxx}g_x + 6f_{xx}g_{xx} - 4f_{x}g_{xxx} + f g_{xxxx} </math> *<math> D_xD_t f \cdot g = f_{tx}g - f_tg_x- f_xg_t + fg_{tx} </math> ==双線形形式== 二つの関数の組に、[[広田微分]]を作用させた場合、各項は二つの関数の導関数について、どちらも一次式の形になっており、これを'''双線形形式''' (bilinear form) と呼ぶ。[[可積分系]]の非線形偏微分方程式は、適当な従属変数の変換の下、双線形形式の[[広田微分]]の方程式に変形できる。シンプルな形に表現された双線形形式の方程式に、[[広田微分]]の性質を組み合わせることで、見通しのよい計算で解を構成することが可能となる。 {|class="wikitable" style="margin: 1em auto 1em auto" !方程式!!変数変換!!双線形形式 |- |[[KdV方程式]]: <math>u_{t}+6uu_{x}+u_{xxx}=0 \,</math>|| <math>u=2\frac{\partial^2}{\partial x^2}\log{f}</math>|| <math> D_x(D_t+D_x^{\,3}) f \cdot f=0</math> |- |[[mKdV方程式]]: <math>u_{t}+6u^2u_{x}+u_{xxx}=0\,</math>|| <math>u=\frac{g}{f}</math>||<math> (D_t+D_x^{\,3}) g \cdot f=0, \, D_x^{\,2}f \cdot f=2g^2</math> |- |[[非線形シュレディンガー方程式|非線形Schrödinger方程式]]: <math>iu_{t}+u_{xx}+2|u|^2u=0\,</math>|| <math>u=\frac{g}{f}</math> (<math>f\,</math>は実数値関数、<math>g\,</math>は複素数値関数)||<math> (iD_t+D_x^{\,2}) g \cdot f=0, \, D_x^{\,2}f \cdot f=2gg^{\ast}</math> |- |サイン・ゴルドン方程式: <math>u_{tx}=\sin{u}\,</math>|| <math>u=2i\log{\frac{f^{\ast}}{f}}</math> (<math>f\,</math>は複素数値関数)|| <math> D_xD_t f \cdot f=-\frac{1}{2} (f^{\ast\,2}-f^2)</math> |- |戸田格子: <math>\frac{d^2}{dt^2}r_n=2e^{-r_n}-e^{-r_{n-1}}-e^{-r_{n+1}}\,</math>|| <math>V_n=e^{-r_n}-1, \,V_n=\frac{d^2}{dt^2}\log{\tau_n}</math>|| <math> \frac{1}{2}D_t^{\, 2} \tau_n \cdot \tau_n=\tau_{n+1}\tau_{n-1}-\tau_n^{\,2}</math> |- |KP方程式: <math>\frac{\partial}{\partial x}\bigl ( u_{t}+6uu_{x}+u_{xxx} \bigr )+u_{yy}=0</math>|| <math>u=2\frac{\partial^2}{\partial x^2}\log{f}</math>|| <math> (D_xD_t+D_y^{\,2}+D_x^{\,4}) f \cdot f=0</math> |} ==広田の方法== 広田の方法では、[[可積分系]]の非線形偏微分方程式に対し、[[対数微分]]などの従属変数の変換を行った後、[[広田微分]]を用いて、双線形形式の微分方程式に帰着させる。さらに双線形形式の微分方程式を、べき級数の形式で展開し、各べき乗のオーダーを満たす関数形を定めていくことで解を構成する。[[逆散乱法]]では、非線形偏微分方程式を[[シュレディンガー方程式]]の[[散乱問題]]に帰着させ、散乱データから元の非線形偏微分方程式の解に対応するポテンシャル関数を構成するという数学的技巧を要するが、広田の方法では直接的なアプローチで元の方程式を解くことができ、簡便性が高い。 ===KdV方程式の例=== 可積分系の代表的な例である[[KdV方程式]]で、広田の方法を説明する。KdV方程式 :<math> u_{t} + 6uu_{x}+u_{xxx}=0 \,</math> において、 :<math> u=2\frac{\partial^2}{\partial x^2} \log{f} \,</math> なる変数変換をすると、 :<math> D_x(D_t+D_x^{\,3}) f \cdot f=0</math> なる双線形形式の方程式に帰着される。ここで {{mvar|f}} を :<math>f=1 + \epsilon f_1 + \epsilon^2 f_2 + \cdots \,</math> と {{mvar|ε}} によるべき級数で展開する。これを双線形形式の方程式に代入し、各べき {{mvar|ε<sup>n</sup>}} のオーダー毎にまとめると、 :<math>\epsilon: \,\, D_x(D_t+D_x^{\, 3})(f_1 \cdot 1+ 1 \cdot f_1)=0</math> :<math>\epsilon^2: \,\, D_x(D_t+D_x^{\, 3})(f_2 \cdot 1+ f_1 \cdot f_1 + 1 \cdot f_2)=0</math> :<math>\epsilon^3: \,\, D_x(D_t+D_x^{\, 3})(f_3 \cdot 1+ f_2 \cdot f_1+ f_1 \cdot f_2 + 1 \cdot f_3)=0</math> :<math>\vdots </math> となる。 ;1ソリトン解 1ソリトン解を構成するには次のような解の構成を行う。まず、 :<math>f_1=e^{2(\kappa x-\omega t)} \,</math> として、{{math|''ε''<sup>1</sup>}} の項を考えると :<math>\omega=4\kappa^3 \,</math> の関係が満される必要があることがわかる。また、高次の {{mvar|ε<sup>n</sup>}} の項については、特解として、 :<math>f_n=0 \quad n\geq 2</math> をとることができる。よって、解 {{mvar|u}} としては :<math> u=2\frac{\partial^2}{\partial x^2} \log{(1+e^{2(\kappa x-4\kappa^3 t)})} </math> となる。 ==参考文献== *R. Hirota, ''Phy. Rev. Lett.'', '''27''', p. 1192, 1971. {{doi|10.1103/PhysRevLett.27.1192}} * 広田良吾, "直接法によるソリトンの数理", 岩波書店, 1992年, ISBN 978-4000056762 == 関連事項 == *[[ソリトン]] *無限次元Grassmann多様体 *Plucker関係式 *[[行列式]] *[[パフィアン]] *[[可積分アルゴリズム#可積分差分スキーム]] {{DEFAULTSORT:ひろたのほうほう}} [[Category:微分方程式]] [[Category:可積分系]] [[Category:数学に関する記事]] [[Category:数学のエポニム]] {{Mathanalysis-stub}}
このページで使用されているテンプレート:
テンプレート:Differential equations
(
ソースを閲覧
)
テンプレート:Doi
(
ソースを閲覧
)
テンプレート:Lang-en-short
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Mathanalysis-stub
(
ソースを閲覧
)
テンプレート:Mvar
(
ソースを閲覧
)
広田の方法
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報