斜辺のソースを表示
←
斜辺
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
[[File:Rtriangle.svg|thumb|200px|直角三角形 {{math|ABC}} の斜辺は[[線分]] {{math|AB}} で、その長さは {{mvar|c}} である。]] '''斜辺'''(しゃへん、hypotenuse)とは、[[直角三角形]]において、[[直角]]に対する[[辺]]のことである。直角三角形の斜辺は三辺の中で最も長く、その長さは[[ピタゴラスの定理]]により求めることができる。 英語の''hypotenuse''という言葉は、ギリシア語で「下」という意味の''hypo-''と「延ばす」という意味の''teinein''<ref>Schwartzman, Steven ''The Words of Mathematics, An Etymological Dictionary of Mathematical Terms used in English'', Published by the Mathematical Association of America.</ref>、または「横」という意味の''tenuse''<ref>{{cite book |title=Romping Through Mathematics |last=Anderson |first=Raymond |authorlink=Raymond Anderson|coauthors= |year=1947 |publisher=Faber |location= |isbn= |pages=52 }} </ref>を組み合わせたὑποτείνουσα (''hypoteinousa'')という言葉に由来すると言われている。 [[和算]]においては直角三角形のことを勾股弦、斜辺のことを弦(げん)という<ref>{{Kotobank|1=勾股弦・鉤股弦|2=精選版 日本国語大辞典}}</ref>(略字の玄が用いられることもある<ref>{{Kotobank|1=規矩術|2=日本大百科全書(ニッポニカ)}}</ref>)。 ==長さ== [[File:3-4-5 triangle.svg|thumb|200px|直角を挟む二辺の長さが3mと4mであるとき、斜辺の長さは5mとなる。]] 図の直角三角形 {{math|ABC}} において、斜辺の長さ {{mvar|c}} は直角を挟む二辺の長さ {{mvar|a, b}} から定まり、[[平方根]]を用いると :<math> c = \sqrt{ a^2 + b^2 } </math> と書ける。 ==出典== {{脚注ヘルプ}} {{Reflist}} ==関連項目== *[[三角形]] *[[マンハッタン距離]] *[[三角法]] {{DEFAULTSORT:しやへん}} [[Category:初等幾何学]] [[Category:三角法]] [[Category:ピタゴラスの定理]] [[Category:数学に関する記事]] [[de:Rechtwinkliges Dreieck#Hypotenuse]] [[vi:Tam giác#Phân loại tam giác]]
このページで使用されているテンプレート:
テンプレート:Cite book
(
ソースを閲覧
)
テンプレート:Kotobank
(
ソースを閲覧
)
テンプレート:Math
(
ソースを閲覧
)
テンプレート:Mvar
(
ソースを閲覧
)
テンプレート:Reflist
(
ソースを閲覧
)
テンプレート:脚注ヘルプ
(
ソースを閲覧
)
斜辺
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
ソースを閲覧
履歴表示
その他
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWiki についてのヘルプ
特別ページ
ツール
リンク元
関連ページの更新状況
ページ情報