サービト数

提供: testwiki
2025年1月1日 (水) 13:10時点におけるimported>PuzzleBachelorによる版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

サービト数(サービトすう、:Thabit number)とは、32n1nは自然数)の形の自然数のことである。第1種サービト数とも呼ばれる。

サービト数は小さい順に、

2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, ... (テンプレート:OEIS)

である。

9世紀の数学者医者天文学者翻訳家である、サービトはサービト数と友愛数がどのように関係しているかを最初に研究した人物として知られている[1]

性質

サービト数(32n1)を2進数で表すとn+2桁の長さになり、10とn個の1で構成される。

サービト数のうち、素数であるものはサービト素数と呼ばれる。サービト素数は小さい順に、

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, ... (テンプレート:OEIS)

である。

2023年10月現在、サービト数のうち、素数であるものは68個知られている。その数のnは小さい順に[2][3][4]

0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700, 1201046, 1232255, 2312734, 3136255, 4235414, 6090515, 11484018, 11731850, 11895718, 16819291, 17748034, 18196595, 18924988, 20928756, 22103376, ... (テンプレート:OEIS)

である。

234760 ≤ n ≤ 3136255 の範囲にあるサービト素数は分散コンピューティングプロジェクトである「321 search」によって見つかった[5]

2008年、PrimeGridはサービト素数の探索を引き継いだ[6]。このプロジェクトは現在も探索を続けていて、n ≥ 4235414のすべての既知のサービト素数をすでに発見した[7]。また、32n+1の形の素数の探索も行っている。この形の素数は「第2種サービト素数」と呼ばれる。

第2種サービト数は小さい順に、

4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, ... (テンプレート:OEIS)

である。

また、第2種サービト素数は小さい順に、

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657, 221360928884514619393, ... (テンプレート:OEIS)

第2種サービト素数に対応するnは小さい順に、

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346, 16408818, ... テンプレート:OEIS

である。

友愛数との関係

nn1の両方が第1種サービト素数であり、さらに922n11も素数である場合、次のように友愛数のペアを計算することができる。

2n(32n11)(32n1)2n(922n11).


これらの条件を満たすnの値は2,4,7であり、それぞれに対応するサービト素数は、nのときに、11,47,383、n1のときに5,23,191になり、3番目の数は71,1151,73727になる。(対応する友愛数のペアは(220, 284), (17296, 18416),(9363584, 9437056)。)

一般化

整数b2に対して、サービト数は次のようになる。

(b+1)bn1(nは自然数)

また、整数b2に対して第2種サービト数は次のようになる。

(b+1)bn+1(nは自然数)

出典

テンプレート:素数の分類