標準電極電位

提供: testwiki
2022年11月16日 (水) 05:47時点におけるimported>クエによる版 (追記。)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

テンプレート:出典の明記 標準電極電位(ひょうじゅんでんきょくでんい、テンプレート:Lang-en-short)は、ある電気化学反応(電極反応)について、標準状態(反応に関与する全ての化学種の活量が1かつ平衡状態となっている時)の電極電位である。標準電位(ひょうじゅんでんい、テンプレート:Lang-en-short)、標準還元電位(ひょうじゅんかんげんでんい、テンプレート:Lang-en-short)とも呼ばれる。

理論

標準電極電位は標準水素電極の電位を基準(0 ボルト)として表すと約束されている。したがって、標準水素電極と測定対象の電極を組み合わせて作った電池の標準状態における起電力は標準電極電位と等しい。このとき、規約により標準水素電極の電極反応は酸化反応(アノード反応)として表すことになっているので、測定対象電極の電極反応は全て還元反応(カソード反応)として表現される。

以下で具体例を挙げて説明する。

例:酸素還元反応の標準電極電位

例として、次のような酸素の還元反応の標準電極電位について考える。

O2+4H++4e2H2O(カソード反応)

基準となる標準水素電極の反応は次の通り。

2H24H++4e(アノード反応)

上記の2つの電極反応による電池を考え、この電池の標準状態・平衡状態における電気化学ポテンシャルのつり合いを考えてゆく。 (ちなみにこの電池は、水素酸素燃料電池の反応そのものである。)

酸素電極(カソード)の還元反応については

μO2+4μH++4μec=2μH2O

水素電極(アノード)の酸化反応については

2μH2=4μH++4μea

と表すことが出来る。(電子の電気化学ポテンシャルが酸素側(μce-)と水素側(μae-)で区別されていることに注意を要する。)

上記二つのポテンシャルの式を合わせて電池系全体のポテンシャルの釣り合いを考えると

2μH2+μO2+4μH++4μec=2μH2O+4μH++4μea

単体の物質の標準生成ギブズエネルギーは0と約束されているので

μH2=μO20[Jmol1]

となるから、上の式を整理すると、

4μec=2μH2O+4μeaμecμea=2μH2O4

ここで、この電池の起電力Eは、水素電極の電極電位(φaとおく)に対する酸素電極の電極電位(φcとおく)との差だから、

E=(ϕcϕa)=μecμeaF=2μH2O4F(μecμea=F(ϕcϕa))

ここで、Fファラデー定数である。

ネルンストの提案により標準水素電極の電極電位(φa)は0ボルトと約束されているので、

E=ϕc=2μH2O4F(ϕa0[V])=2×(237.178)×103[Jmol1]4×9.64853415×104[Cmol1]1.229[V]

以上より、酸素の還元反応O2 + 4H+ + 4e- → 2H2Oの標準電極電位は1.229ボルトとなる。

一般的な標準電極電位の求め方

一般に、電極反応におけるギブズエネルギー変化ΔrG0に対応する標準電極電位をE0とおくと、

ΔrG=zFE

の関係がある。(zは対象となる電気化学反応にともなって移動する電子の数。Fファラデー定数

代表的な標準電極電位

各単体における標準電極電位(V)
                                                             
Li
-3.045
                                                             
K
-2.925
                                                             
Ca
-2.840
                                                             
Na
-2.714
                                                             
Mg
-2.356
                                                             
Al
-1.676
                                                             
Zn
-0.763
                                                             
Fe
-0.440
                                                             
Ni
-0.257
                                                             
Sn
-0.138
                                                             
Pb
-0.126
0.000
H
 
0.340
Cu
                               
0.796
Hg
                               
0.799
Ag
                               
1.188
Pt
                               
1.520
Au
                               

半反応式と標準電極電位

F2(g)+2e2F(aq)   +2.87V
MnO4(aq)+8H+(aq)+5eMn2+(aq)+4H2O(l)   +1.51V
Cl2(g)+2e2Cl(aq)   +1.36V
Cu2+(aq)+2eCu(s)   +0.34V
2H+(aq)+2eH2(g)   0V
Fe2++(aq)+2eFe(s)   0.44V
Zn2+(aq)+2eZn(s)   0.76V
Al3+(aq)+3eAl(s)   1.68V

測定方法

ある酸化還元反応の標準電極電位は、基準電極(参照電極)との電位差として、サイクリックボルタンメトリー等によって測定できる。ただし、溶媒電極による影響を受け、またネルンストの式にしたがって水素イオン指数によっても変化する。

標準電極電位を使った起電力の求め方

ある全反応の ΔrG は、それを構成している還元半反応の ΔrG の差に等しい。したがって、2つの還元半反応を組み合わせた全反応のEの値は、それらの半反応のEの差に等しい。例えば、銅と亜鉛を使った電池の起電力は次のように求められる。


それぞれの還元半反応式は、

(1)Cu2+(aq)+2eCu(s)   E=+0.34V
(2)Zn2+(aq)+2eZn(s)   E=0.76V

である。この差をとると、

(12)Cu2+(aq)+Zn(s)Cu(s)+Zn2+(aq)   E=+1.1V

E>0であるので、この反応は自発的に起こる。


関連項目