ボレル正則測度

提供: testwiki
2013年4月14日 (日) 05:48時点におけるimported>EmausBotによる版 (ボット: 言語間リンク 2 件をウィキデータ上の d:Q3088680 に転記)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

数学の分野において、n-次元ユークリッド空間 Rn 上の外測度 μ は、次の二つの条件が成り立つとき、ボレル正則測度(ボレルせいそくそくど、テンプレート:Lang-en-short)と呼ばれる。

μ(A)=μ(AB)+μ(AB).
  • すべての(必ずしも μ-可測ではない)集合 A ⊆ Rn に対して、A ⊆ B および μ(A) = μ(B) であるようなボレル集合 B ⊆ Rn が存在する。

これら二条件の内、初めの一つのみを満たすような外測度はボレル測度(Borel measure)と呼ばれる。一方、二つ目の条件のみを満たすような外測度は正則測度(regular measure)と呼ばれる。

Rn 上のルベーグ外測度は、ボレル正則測度の一例である。

ボレル正則測度は、ここでは(可算劣加法的であるだけの)「外」測度として導入したが、もしボレル集合に制限されるなら完全な(可算加法的な)測度となる。

参考文献