ド・ジッター空間

提供: testwiki
ナビゲーションに移動 検索に移動

数学や物理学において、ド・ジッター空間 (テンプレート:Lang-en-short) とは、通常のユークリッド空間における球面に対する、ミンコフスキー空間あるいは時空における類似物である。n 次元ド・ジッター空間は dSn と書き、(標準のリーマン計量を持つ)n 次元球面に対するローレンツ多様体での類似物である。この空間は最大の対称性を持ち、正の定曲率を持ち、3 以上の n に対して単連結である。

名称

ド・ジッター空間は反ド・ジッター空間と同様に、ライデン大学の天文学の教授で、ライデン天文台の天文台長であったウィレム・ド・ジッター (1872–1934) の名前に因んでいる。

ウィレム・ド・ジッターとアルベルト・アインシュタインは、1920年代にライデンで、宇宙の時空の構造について研究を共にした。

概要

一般相対論の言葉でいえば、ド・ジッター空間とは最大対称性を持ち、(正の真空エネルギー密度と負の圧力に対応する)正(反発力)の宇宙定数 Λ を持つアインシュタイン場の方程式テンプレート:仮リンク(vacuum solution)のことである。テンプレート:Nowrap(3つの空間次元と 1つの時間次元)のとき、ド・ジッター空間は物理的な宇宙の天文学的なモデルとなる。ド・ジッター宇宙を参照。

ド・ジッター空間はウィレム・ド・ジッターとトゥーリオ・レヴィ=チヴィタにより同時に独立に発見された。

さらに最近は、ド・ジッター空間はミンコフスキー空間を使うのではなく、特殊相対論の設定として考えられるようになった。その理由は、テンプレート:仮リンク(group contraction)によってド・ジッター空間の等長変換群ポアンカレ群へと還元されることで、時空変換部分群やポアンカレ群のローレンツ変換部分群テンプレート:仮リンク(semi-simple group)ではなく単純群に統一できるためである。この特殊相対論の定式化をテンプレート:仮リンク(de Sitter relativity)と呼ぶ。

定義

ド・ジッター空間は 1つ次元が高いミンコフスキー空間部分多様体として定義することができる。標準的な計量

ds2=dx02+i=1ndxi2

を持つミンコフスキー空間 R1,n をとると、ド・ジッター空間は一枚のシートの双曲面

x02+i=1nxi2=α2

により記述される部分多様体である。ここに α は長さの次元を持つ正の定数である。ド・ジッター空間上の計量は、アンビエント・ミンコフスキー計量から導かれる。導かれた計量はローレンツ的な符号数を持ち非退化である。(上の定義に加えて、α2α2 と置き換えると、2枚のシートの双曲面を得る。この場合の導かれた計量は正定値であり、それぞれのシートは n-次元双曲空間のコピーである。

ド・ジッター空間は、2つのテンプレート:仮リンク(indefinite orthogonal group)の商空間 テンプレート:Nowrap としても定義される。このことは、この空間が非リーマン的なテンプレート:仮リンク(symmetric space)であることを示している。

トポロジー的には、ド・ジッター空間は テンプレート:Nowrap である(したがって、テンプレート:Nowrap であれば、ド・ジッター空間は単連結である)。

性質

ド・ジッター空間のテンプレート:仮リンク(isometry group)は、ローレンツ群 O(1,n) である。従って、計量は n(n+1)/2 個の独立なキリングベクトルを持ち、最大対称である。すべての最大対称空間は定曲率を持つ。ド・ジッター空間のリーマン曲率テンソルは、

Rρσμν=1α2(gρμgσνgρνgσμ)

により与えられる。

リッチテンソルは計量に比例する

Rμν=n1α2gμν

ので、ド・ジッター空間はアインシュタイン多様体である。このことは、ド・ジッター空間は、

Λ=(n1)(n2)2α2

により与えられる宇宙定数を持つアインシュタイン方程式の真空解であることを意味する。ド・ジッター空間のスカラー曲率は、

R=n(n1)α2=2nn2Λ.

により与えられる。n = 4 の場合、Λ = 3/α2 であり、R = 4Λ = 12/α2 である。

静的な座標

ド・ジッター空間に対してテンプレート:仮リンク(static coordinates) (t,r,) を次のように導入することができる。

x0=α2r2sinh(t/α)
x1=α2r2cosh(t/α)
xi=rzi2in.

ここに、zi は (n−2)-球面の Rn−1 の中への標準的な埋め込みを与える。 これらの座標では、ド・ジッター計量は、

ds2=(1r2α2)dt2+(1r2α2)1dr2+r2dΩn22.

となる。r=α にはテンプレート:仮リンク(cosmological horizon)が存在することに注意。

平坦なスライシング

r2=iyi2 として、

x0=αsinh(t/α)+r2et/α/2α,
x1=αcosh(t/α)r2et/α/2α,
xi=et/αyi,2in

とすると、(t,yi) 座標では、計量は、

ds2=dt2+e2t/αdy2

である。ここに dy2=idyi2yi の上の平坦な計量である。

開いたスライシング

標準計量 idzi2=dΩn22 を持つ Sn2 を形成する izi2=1 を考え、

x0=αsinh(t/α)coshξ,
x1=αcosh(t/α),
xi=αzisinh(t/α)sinhξ,2in

とすると、ド・ジッター空間の計量は、

ds2=dt2+α2sinh2(t/α)dHn12,

である。ここに

dHn12=dξ2+sinh2ξdΩn22

はユークリッド的な双曲空間の計量である。

閉じたスライシング

ziSn1 を表し、

x0=αsinh(t/α),
xi=αcosh(t/α)zi,1in

とすると、計量は、

ds2=dt2+α2cosh2(t/α)dΩn12.

である。

tan(η/2)=tanh(t/2α) により時間変数を共形時間へ変えると、アインシュタインの静的宇宙に共形同値な計量

ds2=α2cos2η(dη2+dΩn12).

を得る。ここからド・ジッター空間のペンローズ図を求めることができる。テンプレート:Clarify

ド・ジッター・スライシング

ziSn3 を表し、

x0=αsin(χ/α)sinh(t/α)coshξ,
x1=αcos(χ/α),
x2=αsin(χ/α)cosh(t/α),
xi=αzisin(χ/α)sinh(t/α)sinhξ,3in

とすると、計量は、

ds2=dχ2+sin2(χ/α)dsdS,α,n12,

である。ここに

dsdS,α,n12=dt2+α2sinh2(t/α)dHn22

は開いたスライシングにおける α の曲率半径を持つ n1 次元ド・ジッター空間の計量である。双曲計量は、

dHn22=dξ2+sinh2ξdΩn32

により与えられる。

これは、座標 (t,ξ,θ,ϕ1,ϕ2,,ϕn3)(iχ,ξ,it,θ,ϕ1,,ϕn4) のもとでの開いたスライシングの解析接続であり、時間的と空間的な性質が交換されるので、x0x2 も交換される。

関連項目

参考文献