死力

提供: testwiki
ナビゲーションに移動 検索に移動

テンプレート:Dablink 死力(しりょく、英: force of mortality)とは、保険数理で用いられる用語で、X 歳に達した人が次の瞬間に死亡する確率を統計的に表している。自然人だけでなく、企業が倒産する確率や夫婦が離婚する確率なども死力と呼ぶことがある。

概要

保険金の掛け金を推測するための重要な概念であり、保険においては死力を正確に求めることに膨大な労力を費やしている。一般的には年齢とともに上昇していくが、条件によって死亡する可能性が高くなる年代なども存在するため、必ずしも滑らかな曲線にはならない。

計算法

生命表では、x歳になった人間がx+1歳までに死亡する率を、qxで表現する。これを、ある瞬間の時間の死亡率として捉え直すため、x歳になった人間がx+Δx歳までに死亡する率を、下記のように条件付き確率 Px(Δx) として表現する。

Px(Δx)=P(x<X<x+ΔxX>x)=FX(x+Δx)FX(x)(1FX(x))

ここで、FX(x) は、死亡年齢を確率変数Xで表すとき、x歳までに死亡する確率を示す累積分布関数である。

上記式を、勾配を求めるためにΔxで除算し、Δx を 0 に近づけることによって、死力 μ(x) を得ることができる。

μ(x)=limΔx0FX(x+Δx)FX(x)Δx(1FX(x))=F'X(x)1FX(x)

ここで、fX(x)=F'X(x) とし、生存関数S(x)=1FX(x) とすると、死力は生存関数で以下のように表現できる。

μ(x)=fX(x)1FX(x)=S(x)S(x)=ddxln[S(x)]

死力 μ(x) は、死亡年齢の確率変数 Xの条件付き確率密度関数である一方で、 fX(x) は条件のない確率密度関数である[1]。そのため、x 歳までの生存関数 S(x)が与えられたとき、fX(x)は、条件付き確率μ(x)S(x)の積となるため、死力 μ(x) は、

μ(x)=fX(x)S(x)

と表現される。

死力 μ を、xからx+tまで積分すると、

xx+tμ(y)dy=xx+tddyln[S(y)]dy=ln[S(x+t)]+ln[S(x)]

となる。

x歳に到達した人間が、そこからt年生存する確率を、Sx(t)=S(x+t)S(x) と定義し、上式の両辺の負の指数をとると、

Sx(t)=exx+tμ(y)dy

となる。

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

テンプレート:Applied-math-stub

  1. R. Cunningham, T. Herzog, R. London (2008). Models for Quantifying Risk, 3rd Edition, Actex.