KP方程式

提供: testwiki
ナビゲーションに移動 検索に移動

KP方程式 (テンプレート:Lang-en-short) は非線形波動水面波を記述する偏微分方程式であり、次のように表わされる。

x(tu+uxu+ϵ2xxxu)+λyyu=0,λ=±1.

KdV方程式の2次元版方程式であり、KdV方程式と並ぶ可積分系ソリトン方程式の代表例である。

変種

KP方程式に関連した業績のある研究者

海外

日本

関連項目

出典

テンプレート:Reflist

参考文献

テンプレート:参照方法

関連文献

和文

英文

  • Lou, S. Y., & Hu, X. B. (1997). Infinitely many Lax pairs and symmetry constraints of the KP equation. Journal of Mathematical Physics, 38(12), 6401-6427.
  • Nakamura, A. (1989). A bilinear N-soliton formula for the KP equation. Journal of the Physical Society of Japan, 58(2), 412-422.
  • Kodama, Y. (2004). Young diagrams and N-soliton solutions of the KP equation. Journal of Physics A: Mathematical and General, 37(46), 11169.
  • Xiao, T., & Zeng, Y. (2004). Generalized Darboux transformations for the KP equation with self-consistent sources. Journal of Physics A: Mathematical and General, 37(28), 7143.
  • Minzoni, A. A., & Smyth, N. F. (1996). Evolution of lump solutions for the KP equation. Wave Motion, 24(3), 291-305.

外部リンク

テンプレート:Mathanalysis-stub

  1. Wazwaz, A. M. (2008). Solitons and singular solitons for the Gardner–KP equation. Applied Mathematics and Computation, 204(1), 162-169.
  2. Xu, B., & Liu, X. Q. (2009). Classification, reduction, group invariant solutions and conservation laws of the Gardner-KP equation. Applied mathematics and computation, 215(3), 1244-1250.
  3. Naz, R., Ali, Z., & Naeem, I. (2013). Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem. In Abstract and Applied Analysis (Vol. 2013). Hindawi.
  4. Jawad, A. J. A. M., Mirzazadeh, M., & Biswas, A. (2015). Dynamics of shallow water waves with Gardner–Kadomtsev–Petviashvili equation. Discrete and Continuous Dynamical Systems, Series S, 8(6), 1155-1164.
  5. Wazwaz, A. M., & El-Tantawy, S. A. (2017). Solving the (3+1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dynamics, 88(4), 3017-3021.
  6. Sun, B., & Wazwaz, A. M. (2018). General high–order breathers and rogue waves in the (3+1)-dimensional KP–Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 64, 1-13.
  7. Wazwaz, A. M. (2008). Multiple-soliton solutions for the Lax–Kadomtsev–Petviashvili (Lax–KP) equation. Applied Mathematics and computation, 201(1-2), 168-174.
  8. Tokihiro, T., Takahashi, D., & Matsukidaira, J. (2000). Box and ball system as a realization of ultradiscrete nonautonomous KP equation. Journal of Physics A: Mathematical and General, 33(3), 607.
  9. 9.0 9.1 Shinzawa, N., & Hirota, R. (2003). The Bäcklund transformation equations for the ultradiscrete KP equation. Journal of Physics A: Mathematical and General, 36(16), 4667.
  10. 10.0 10.1 新沢信彦, & 広田良吾. (2003). 超離散 KP 方程式, 超離散 BKP 方程式の Backlund 変換方程式 (可積分系研究の新展開: 連続・離散・超離散).
  11. Krichever, I. M., & Novikov, S. P. (1978). Holomorphic bundles over Riemann surfaces and the Kadomtsev—Petviashvili equation. I. Functional Analysis and Its Applications, 12(4), 276-286.
  12. Fokas, A. S., & Ablowitz, M. J. (1983). Method of solution for a class of multidimensional nonlinear evolution equations. Physical Review Letters, 51(1), 7.
  13. Fokas, A. S., & Ablowitz, M. J. (1983). On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation. Physics Letters A, 94(2), 67-70.
  14. Fokas, A. S., & Ablowitz, M. J. (1983). On the Inverse Scattering of the Time‐Dependent Schrödinger Equation and the Associated Kadomtsev‐Petviashvili (I) Equation. Studies in Applied Mathematics, 69(3), 211-228.
  15. 15.0 15.1 Hirota, R., Ohta, Y., & Satsuma, J. (1988). Solutions of the Kadomtsev-Petviashvili equation and the two-dimensional Toda equations. Journal of the Physical Society of Japan, 57(6), 1901-1904.
  16. 松木平淳太, & 薩摩順吉. (1989). KP hierarchy の対称性と保存量 (ソリトン理論における広田の方法).
  17. Willox, R., Tokihiro, T., & Satsuma, J. (1997). Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. Journal of Mathematical Physics, 38(12), 6455-6469.
  18. Isojima, S., Willox, R., & Satsuma, J. (2002). On various solutions of the coupled KP equation. Journal of Physics A: Mathematical and General, 35(32), 6893.
  19. 19.0 19.1 Matsukidaira, J., Satsuma, J., & Strampp, W. (1990). Conserved quantities and symmetries of KP hierarchy. Journal of mathematical physics, 31(6), 1426-1434.
  20. Kajiwara, K., Matsukidaira, J., & Satsuma, J. (1990). Conserved quantities of two-component KP hierarchy. Physics Letters A, 146(3), 115-118.
  21. Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations—Euclidean Lie algebras and reduction of the KP hierarchy—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1077-1110.
  22. Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). Operator Approach to the Kadomtsev-Petviashvili Equation–Transformation Groups for Soliton Equations III–. Journal of the Physical Society of Japan, 50(11), 3806-3812.
  23. Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type. Physica D: Nonlinear Phenomena, 4(3), 343-365.
  24. Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Quasi-Periodic Solutions of the Orthogonal KP Equation—Transformation Groups for Soliton Equations V—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1111-1119.
  25. Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). KP hierarchies of orthogonal and symplectic type–Transformation groups for soliton equations VI–. Journal of the Physical Society of Japan, 50(11), 3813-3818.
  26. テンプレート:Cite report
  27. テンプレート:Cite journal