キャブタクシー数

提供: testwiki
ナビゲーションに移動 検索に移動

n 番目のキャブタクシー数(キャブタクシーすう、テンプレート:Lang、Cabtaxi(n)と表記される)とは、2つの立方数の和として n 通りに表される最小の正の整数と定義される。ここでの立方数は全ての整数(正の整数、0、負の整数)を取りうる。立方数が正の整数のみに限定されればタクシー数になる。全ての n に対してキャブタクシー数が存在する(タクシー数は全ての n に対して存在することが証明されているため)。現在は10個のキャブタクシー数が知られている(テンプレート:OEISを参照)。

既知のキャブタクシー数

Cabtaxi(1)=1=13±03
Cabtaxi(2)=91=33+43=6353
Cabtaxi(3)=728=63+83=9313=123103
Cabtaxi(4)=2741256=1083+1143=1403143=16831263=20731833
Cabtaxi(5)=6017193=1663+1133=1803+573=1853683=20931463=24632073
Cabtaxi(6)=1412774811=9633+8043=113433573=115535043=124638053=2115320043=4746347253
Cabtaxi(7)=11302198488=19263+16083=19393+15893=226837143=2310310083=2492316103=4230340083=9492394503
Cabtaxi(8)=137513849003496=229443+500583=365473+445973=369843+442983=521643164223=531303231843=573163370303=972903921843=21831632173503
Cabtaxi(9)=424910390480793000=6452103+5386803=6495653+5323153=75240931014093=75978032391903=77385033376803=83482035393503=1417050313426803=3179820331657503=5960010359560203
Cabtaxi(10)=933528127886302221000=774801303774282603=413376603411547503=184216503174548403=10852660370115503=10060050343898403=9877140331094703=9781317313183173=97733303845603=84443453+69200953=83877303+70028403

Cabtaxi(5),Cabtaxi(6),及びCabtaxi(7)はランドル・L・ラスバンによって、Cabtaxi(8)はダニエル・バーンスタインによって発見された。またバーンスタインの発見方法を利用して、Cabtaxi(9)がダンカン・ムーアによって発見された[1]

Cabtaxi(10)は当初、2006年にクリスチャン・ボイヤーによってCabtaxi(10)が取りうる値の上限として示され、ウーヴェ・ホラーバッハによってこれが実際にCabtaxi(10)であることが証明された[2]。このことは2008年5月16日にメーリングリストNMBRTHRYにて報告された。

2008年4月現在、Cabtaxi(11)からCabtaxi(42)までの上限が示されている[3]

脚注

テンプレート:Reflist

関連項目

外部リンク