星状領域

提供: testwiki
ナビゲーションに移動 検索に移動
星状領域(星状凸あるいは星状集合とも呼ばれる)は、必ずしも通常の意味でのではない。
アニュラスは星状領域ではない。

数学において、ユークリッド空間 Rn のある集合 S星状領域(せいじょうりょういき、テンプレート:Lang-en-short)あるいは星状凸集合星状集合または放射凸集合であるとは、S 内のある x0 に対し、それと S 内の任意の x を結ぶ線分S に含まれることをいう。この定義は直ちに、任意のあるいは複素ベクトル空間に一般化される。

直感的に、S をある壁で囲われた領域としたとき、S 内の任意の場所 x に視線を送ることが出来るある場所 x0S 内に存在するなら、S は星状領域である。

  • Rn 内の任意の直線あるいは平面は、星状領域である。
  • 直線あるいは平面からある一点が除かれたものは、星状領域ではない。
  • ARn 内の集合とするとき、A 内のすべての点を原点とつなげることで得られる集合 B={ta:aA,t[0,1]} は、星状領域である。
  • 任意のでない凸集合は、星状領域である。ある集合が凸であるための必要十分条件は、それがその集合内の任意の点に関して星状領域となることである。
  • 十字の形をした領域は星状領域であるが、凸ではない。
  • テンプレート:仮リンクは、境界が連結された線分であるような星状領域である。

性質

  • 星状領域の閉包も星状領域であるが、星状領域の内部は必ずしも星状領域ではない。
  • すべての星状領域は、直線ホモトピーによる可縮集合である。特に、すべての星状領域は単連結である。
  • すべての星状領域は、それ自身に縮めることが出来る。すなわち、任意の縮小率 r<1 に対して、r で縮小された星状領域は、元の星状領域に含まれる[1]
  • 二つの星状領域の合併や共通部分は、必ずしも星状領域ではない。
  • Rn 内の空でない開の星状領域 S は、Rn微分同相である。

関連項目

参考文献

テンプレート:Reflist

外部リンク

テンプレート:Commons category

テンプレート:Functional Analysis