テンプレート:参照方法 射影幾何学において、n 次元射影空間の射影変換(しゃえいへんかん)とは、射影空間の同型写像である。図学的には中心投影変換に相当する[1]。
体 k 上の n 次元射影空間 Pn(k) とは、ベクトル空間 kn+1 から原点を除いた空間を体 k の乗法群 k* のスカラー倍の作用で割った空間 (kn+1∖{0})/k* のことである。すると、kn+1 の間の同型写像 f は、スカラー倍と可換であり、また 0 でないベクトルを 0 でないベクトルに写すから、Pn(k) の間の同型写像を誘導する。これが Pn(k) の射影変換である。
テンプレート:Reflist
テンプレート:Geometry-stub