チェビシェフ関数

提供: testwiki
2022年8月30日 (火) 10:32時点におけるimported>おいらのオイラーによる版 (Category:エポニムを除去; Category:数学のエポニムを追加 (HotCat使用))
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

チェビシェフ関数(チェビシェフかんすう、Chebyshev function)は、数論における関数。パフヌティ・チェビシェフに因んで呼ばれている。 二つの関数があり、第一チェビシェフ関数 ϑ(x) または θ(x) とは

ϑ(x)=pxlnp

で定義される関数のことであり、第二チェビシェフ関数 ψ(x) とは

ψ(x)=pkxlnp=nxΛ(n)

で定義される関数のことである。ここで Λフォン・マンゴルト関数である。

これらの関数はともに x より小さな素数の分布に関する情報を与える点で素数計数関数 π(x) と類似しているが、素数の分布に関する定理を証明する上では素数計数関数より使いやすく、そのため一般には素数の分布に関する定理の証明ではチェビシェフ関数が用いられることが多い。

基本的性質

第二チェビシェフ関数は第一チェビシェフ関数を使って

ψ(x)=1nln2xϑ(x1/n).

と表される。したがって

|ψ(x)ϑ(x)|=x+(1+o(1))x3

により、 第一チェビシェフ関数と第二チェビシェフ関数の差は比較的小さいことが示される。チェビシェフ関数と素数計数関数 π(x) との間には、

π(x)=pxlnppxdttln2t+1lnxpxlnp=2xϑ(t)dttln2t+ϑ(x)lnx.

という関係が成り立つ。

また、第二チェビシェフ関数は 1 から n までのすべての整数の最小公倍数の対数に等しい:

lcm(1,2,,n)=eψ(n).


ゼータ関数との関係

第二チェビシェフ関数を補正した関数

ψ0(x)=limh012(ψ(x+h)+ψ(xh))=12(nxΛ(n)+n<xΛ(n))={ψ(x)12Λ(x)x=2,3,4,5,7,8,9,11,13,16,ψ(x)otherwise.

は、リーマンゼータ関数を使い、

ψ0(x)=xρxρρln(2π)12ln(1x2).

と表示できる。ここで ρ はゼータ関数の非自明な零点すべてを走る。ゼータ関数の零点に関する考察から

ψ0(x)x

がわかり、ここから、前節の性質を用いて素数定理

π(x)xlnx

を導くことができる。

値の評価

現在、下記の評価が知られている:テンプレート:Refテンプレート:Ref (以下、 p1 = 2, p2 = 3, ... といった具合に pkk 番目の素数を表す)

ϑ(pk)k(lnk+lnlnk1+lnlnk2.050735lnk) for k1011,
ϑ(pk)k(lnk+lnlnk1+lnlnk2lnk) for k198,
|ϑ(x)x|0.006788xlnx for x10544111,
|ψ(x)x|0.006409xlnx for xe22,
ψ(x)<(1+136260)x for x>0,
ψ(x)ϑ(x)>0.9999x for x121,
0.9999x<ψ(x)ϑ(x)<1.00007x+1.78x3 for x>0,

また、リーマン予想により、次の評価が得られる:テンプレート:Ref

|ϑ(x)x|<18πxln2x for x599,
|ψ(x)x|<18πxln2x for x73.2,

これらの評価にはリーマンのゼータ関数の零点に関する評価と、チェビシェフ関数に対する複雑な近似公式が必要である。

初等的な評価

一方、初等的な方法により

ϑ(n)<2nln2 for n=1,2,

となることを証明することができる。[1]


  • n=1 のとき、 ϑ(n)=0<2ln2.
  • n=2 のとき、 ϑ(n)=ln2<4ln2.

ここで、 nm -1 以下の整数のとき、上記の不等式が正しいと仮定する。

  • m>2 が偶数とする。 ϑ(m)=ϑ(m1)<2(m1)ln2<2mln2.
  • m>2 が奇数とする。 m=2l+1 とおくと二項定理より
(2l+1l)=12[(2l+1l)+(2l+1l+1)]<12k=02l+1(2l+1k)=12(1+1)2l+1=4l
が成り立つ。
l+1<p2l+1 となる素数 p はすべて (2l+1l)
を割り切るので、
ϑ(2l+1)ϑ(l+1)=l+1<p2l+1lnpln(2l+1l)<2lln2.
よって
ϑ(2l+1)<2lln2+ϑ(l+1)<2lln2+2(l+1)ln2=2(2l+1)ln2.

以上より、数学的帰納法により上記の不等式が正しいことが証明された。

この議論はベルトラン=チェビシェフの定理メルテンスの定理といった、素数に関する評価を初等的に証明する上でも重要な役割を果たす。

Notes

  • テンプレート:Note Pierre Dusart, "Estimates of some functions over primes without R.H.". テンプレート:Arxiv
  • テンプレート:Note Pierre Dusart, "Sharper bounds for ψ, θ, π, pk", Rapport de recherche n° 1998-06, Université de Limoges. An abbreviated version appeared as "The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2", Mathematics of Computation, Vol. 68, No. 225 (1999), pp. 411–415.
  • テンプレート:Note Lowell Schoenfeld, "Sharper bounds for the Chebyshev functions θ(x)$ and ψ(x) II, Mathematics of Computation, Vol. 30 , No. 134 (1976), pp. 337–360.
  • テンプレート:Note Lowell Schoenfeld, "Sharper bounds for the Chebyshev functions θ(x)$ and ψ(x) II, Mathematics of Computation, Vol. 30 , No. 134 (1976), pp. 337–360.