ハルナック曲線定理
ナビゲーションに移動
検索に移動

実代数幾何学において、テンプレート:仮リンク(Carl Gustav Axel Harnack)に因み命名されたハルナック曲線定理 (Harnack's curve theorem) は、代数曲線が持つことのできる連結成分の可能な数を、曲線の次数によって記述する。実射影平面の中の次数 m の代数曲線では、成分の数 c は、
の範囲の中にある。最大数は次数 m の曲線の最大種数に 1 を足したもので、曲線が非特異なときに達成される。さらに、この範囲の中の任意の値は、実際に可能である。

実成分の最大数を持つ曲線を(最大 (maximum) の m から)M-曲線(M-curve)と呼ぶ。例えば、 のような、2つの成分を持つ3次の楕円曲線や、4つの成分を持つ4次のテンプレート:仮リンクは、M-曲線の例である。
この定理はテンプレート:仮リンクの背景をなしている。
最近の発展では、ハルナック曲線は、そのアメーバが(ダイマー模型の特性曲線と呼ばれる)多項式 P のテンプレート:仮リンクと同じ面積を持つような曲線であり、さらに、すべてのハルナック曲線はあるダイマー模型のスペクトル曲線となっていることが示された テンプレート:Harv (テンプレート:Harvtxt)。
参考文献
- D. A. Gudkov, The topology of real projective algebraic varieties, Uspekhi Mat. Nauk 29 (1974), 3–79 (Russian), English transl., Russian Math. Surveys 29:4 (1974), 1–79
- C. G. A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), 189–199
- G. Wilson, Hilbert's sixteenth problem, Topology 17 (1978), 53–74
- テンプレート:Cite journal url=http://arxiv.org/pdf/math-ph/0311005.pdf
- テンプレート:Citation url=http://arxiv.org/pdf/math/0108225.pdf