A∞-オペラド

提供: testwiki
ナビゲーションに移動 検索に移動

テンプレート:出典の明記 テンプレート:専門的 代数学代数的トポロジー、あるいはオペラド理論において、A∞-オペラドとは、積写像のパラメータ空間で、連接ホモトピーの類似概念である。

定義

位相空間上の対称群の作用によって構成されるオペラドAはA∞と呼ばれ、その'A(N)'の全体がなす空間はΣn-オペラド空間(ΣN対称群であり、乗算作用(N∈N)を有する)となる。その空間'A(N)'が可縮である場合は、非Σオペラドが構成され(非対称オペラドと呼ばれる)、オペラドAはA∞となる。位相空間以外のでは、可縮を鎖複体の圏と擬同型なものに置き換える必要がある。

An-オペラド

用語の文字Aは「連想」を表し、無限大記号は、「任意」よりも高いホモトピーまで連想性が必要であることを意味する。より一般に、 An- オペラドn ∈ N )が定義でき、これは特定のレベルのホモトピーまでしか結合しないパラメータ乗算を持つ。

A∞-オペラドと単ループ空間

空間Xを体上の多元環とすると、 BXはループ空間となる。 Aの連結成分のπはモノイド基底となる。体上の多元環である場合、A -オペラドは𝐀 -空間になる。ループ空間において、この特性による3つの結果がある。まず、ループ空間はA -空間になる。第二に、接続されたA-空間Xがループ空間になる。第三に、切断可能で群完備なA -空間はループ空間となる。

ホモトピー理論におけるA-オペラドの重要性は、A-オペラドとループ空間上の代数関係に由来する。

A∞-代数

A-オペラド上の多元環はA-代数と呼ばれる。例えば、シンプレクティック多様体の深谷圏がある(擬正則曲線も参照)。

有用ではないが最も自明なA -オペラドの例は式で与えれる。a(n)=Σn 。このオペラドは、結合法則の積を表している。定義上、このA-オペラドはホモトピー同値な写像を持っている。

スタシェフによるポリトープで与えられるA -オペラドとしてアソシアヘドラがある 。

組み合わせ論の例として、微小階差オペラドがある:空間A(n)は単位区間から、n個の互いに素な区間への埋め込み全体で構成される。

関連項目

  • ホモトピー結合多元環
  • オペラド
  • E-無限オペラド
  • ループ空間