HMFモデル

提供: testwiki
ナビゲーションに移動 検索に移動

ハミルトニアン平均場モデルまたはHMFモデルテンプレート:Sfn (テンプレート:Lang-en-short) とは、物理学において多体系の研究に用いられる模型のひとつである。重力多体系を単純化した模型として宇宙物理学の観点から、また長距離相互作用のある系として統計力学の観点から研究されてきた。1次元系であるにもかかわらず相転移が起こるテンプレート:Sfnほか、violent relaxation、長期的に持続する metaequilibrium state、ゆっくりとした衝突緩和といった長距離相互作用系の興味深い性質を備えているテンプレート:Sfn

定義

HMF モデルは1次元 N 粒子系のモデルであり、θi, pi をそれぞれ i 番目の粒子の座標および運動量として、HMF モデルのハミルトニアンテンプレート:Indent により与えられるテンプレート:Sfnテンプレート:Sfn。ただし座標 θiθi+2πθi を同一視する。相互作用は J>0 のとき引力(強磁性)、J<0 のとき斥力(反強磁性)であるテンプレート:Sfnテンプレート:Sfn。ただし反強磁性モデルは一様な状態がすべてのエネルギーで安定であり相転移が起きないテンプレート:Sfnため、以下では強磁性モデル (J>0) について記述する。

しばしば秩序変数として1粒子あたりの磁化 テンプレート:Indent が導入されるテンプレート:Sfnテンプレート:Sfnテンプレート:Sfn。これを用いると HMF モデルのハミルトニアンは テンプレート:Indent とも表せるテンプレート:Sfn

他の系との関係

統計力学において研究されるXY模型は、各格子点のスピンが2次元の単位ベクトル s=(cosθi,sinθi) により表される模型であり、そのハミルトニアンは テンプレート:Indent により与えられる[1]。ここに i,j は最近接格子の組に関する和であり、XY 模型では各スピンは最近接格子(1次元ならば隣接する2点)のスピンとのみ相互作用する。HMF モデルはその逆に各スピンが他のすべてのスピンと同じ強さで相互作用する(平均場近似)ものであるテンプレート:Sfnテンプレート:Sfnテンプレート:Sfn

HMF モデルは1次元重力多体系において重力ポテンシャルフーリエ級数表示を最低次で打ち切ったものに一致するテンプレート:Sfn。すなわち、N 個の粒子の座標を θi とするとき、その系の重力ポテンシャル ψポアソン方程式 テンプレート:Indent により定まる(k は定数、δ(x) はディラックのデルタ関数テンプレート:Sfn。その解をフーリエ級数の形 テンプレート:Indent に表示するとき、最低次の n=1 の項のみを残す近似が HMF モデルであるテンプレート:Sfnθi=θj での特異性を持たず系のサイズが有限であるため、HMF モデルは重力多体系特有の困難のないごく単純化した模型とみなすことができるテンプレート:Sfn

熱力学的性質

熱力学極限(粒子数 N の極限)で系の統計分布は一体分布関数で記述できるようになるテンプレート:Sfn。この1体分布関数は、粒子密度 テンプレート:IndentA, B は定数)を導き、B=0 ならば粒子は一様に分布し、B0 ならばクラスターを形成するテンプレート:Sfn。定数 Bセルフコンシステント条件 テンプレート:IndentIn は修正ベッセル関数)を満足し、これが非自明解 B0 を持つ条件が テンプレート:Indent と求まるテンプレート:Sfn。すなわち、温度 Tc より低温のときにのみ熱平衡状態としてクラスター状態が可能であるテンプレート:Sfn。そして熱力学的安定性の要求から、低温側ではクラスター状態が安定であり、一方高温側では一様状態が安定であることが結論されるテンプレート:Sfn。この転移は2次相転移であるテンプレート:Sfn

あるいは、この結果は以下の統計力学的な考察に基づいて導出することもできる。一般に長距離相互作用する系ではミクロカノニカルアンサンブルカノニカルアンサンブルが等価ではなく異なる結果を導く可能性があるが、HMF モデルの場合には両者は等価であるテンプレート:Sfn。その1粒子あたりの自由エネルギー ϕ(β) (β逆温度) は、極限 N に対して テンプレート:Indent と求まる(適当な規格化を施した)テンプレート:Sfn。自由エネルギーの極値条件として方程式 テンプレート:Indent が非自明解を持つか、という条件が得られ、上の考察が再現されるテンプレート:Sfn。短距離相互作用する1次元系では自発的対称性の破れによる相転移が起きないことが保証されており(テンプレート:仮リンク)、この結果は HMF モデルの熱力学的性質において長距離相互作用が本質的であることを示しているテンプレート:Sfn

歴史

HMF モデルの原型となるモデルは1992年に小西哲郎と金子邦彦によって導入された[2]テンプレート:Sfn。彼らは非線型力学(カオス理論)の観点からこの模型に興味を持ち、ある離散的なシンプレクティック写像の反復により粒子群がクラスターを形成し有限時間の後にクラスターが散開することを観察した[2]。1993年に稲垣省五と小西はその連続時間における対応物について運動論的方程式を用いて研究した[3]が、これが現在 HMF モデルとして知られているものである。また稲垣と小西はこのモデルにおけるクラスターの形成過程は自己重力系のジーンズ不安定性に相当する不安定性によるものであると指摘した。続く論文で稲垣は HMF モデルの熱平衡状態の熱力学的安定性を論じ[4]、1996年には運動学的方程式を用いて HMF モデルのボルツマンエントロピーが減少しないことを示した[5]。なお稲垣はこの模型を modified Konishi-Kaneko model と呼称している[4]テンプレート:Sfn。同時期に Christophe Pichon とドナルド・リンデン=ベル棒渦巻銀河におけるバー構造の観点から同じ模型について調べていたテンプレート:Sfn

1995年に Antoni & Ruffo は強磁性体の統計力学の文脈で、XY模型の平均場長距離相互作用の極限に相当するモデルについて研究し、それを Hamiltonian mean-field X-Y model と命名したテンプレート:Sfn。またその論文の中でこの模型が稲垣、小西らによって既に調べられていたものと同じものであると指摘しているテンプレート:Sfn。Dauxios らは2002年に HMF モデルの相転移の性質についてより詳しく調べている[6]。なお結合定数が 1/N に比例してスケールするのではない場合、熱力学極限でエネルギーの示量性が成立せず熱力学的振る舞いが異なるが、この場合の HMF モデルの熱力学については Tamarit & Anteneodo (2000), Toral (2004) らによって調べられたテンプレート:Sfn[7][8]。その他に HMF モデルの quasi-stationary state (QSS) の性質テンプレート:Sfn[9][10][11]リンデン=ベル統計の応用テンプレート:Sfn[12][13]、対応する量子多体系の性質[14][15]といった研究が行われている。

脚注

テンプレート:Reflist

参考文献