対応状態の法則
ナビゲーションに移動
検索に移動
対応状態の法則または対応状態の原理[1]とは、同じ換算温度および換算圧力で比較した場合にあらゆる流体がほぼ同じ圧縮率を持ち、また理想気体の挙動からもほぼ同じ程度に逸脱することを示す法則である[2][3]。
構成方程式中にある材料定数は材料の種類ごとに異なる値をとるが、この法則により構成方程式を書き変えることで削減することができる。換算変数は臨界点によって定義される。最も顕著な例はファンデルワールスの状態方程式であり、その換算形はすべての流体に適用される。
この法則は1873年頃のヨハネス・ファン・デル・ワールスの研究[4]に端を発する。彼は流体の特性を評価するために臨界温度と臨界圧力を使用した。
臨界点における圧縮率
臨界点における圧縮率 テンプレート:Math は
で定義される。テンプレート:Math は多くの状態方程式によって物質に依存しない定数であると予測されている。たとえばファンデルワールスの状態方程式では 3/8 = 0.375 である。ここで添え字 c は臨界点であることを示し、
- テンプレート:Math: 臨界温度
- テンプレート:Math: 臨界圧力
- テンプレート:Math: 臨界点における比体積
- テンプレート:Math: 気体定数
- テンプレート:Math: モル質量
である。
いくつかの物質における値を表に示す。
| 物質 | テンプレート:Math/Pa | テンプレート:Math/K | テンプレート:Math/(m3/kg) | テンプレート:Math |
|---|---|---|---|---|
| H2O | テンプレート:Val | 647.3 | テンプレート:Val | 0.23[5] |
| 4He | テンプレート:Val | 5.2 | テンプレート:Val | 0.31[5] |
| He | テンプレート:Val | 5.2 | テンプレート:Val | 0.30[6] |
| H2 | テンプレート:Val | 33.2 | テンプレート:Val | 0.30[6] |
| Ne | テンプレート:Val | 44.5 | テンプレート:Val | 0.29[6] |
| N2 | テンプレート:Val | 126.2 | テンプレート:Val | 0.29[6] |
| Ar | テンプレート:Val | 150.7 | テンプレート:Val | 0.29[6] |
| Xe | テンプレート:Val | 289.7 | テンプレート:Val | 0.29 |
| O2 | テンプレート:Val | 154.8 | テンプレート:Val | 0.291 |
| CO2 | テンプレート:Val | 304.2 | テンプレート:Val | 0.275 |
| SO2 | テンプレート:Val | 430.0 | テンプレート:Val | 0.275 |
| CH4 | テンプレート:Val | 190.7 | テンプレート:Val | 0.285 |
| C3H8 | テンプレート:Val | 370.0 | テンプレート:Val | 0.267 |
比熱
比熱に関するアインシュタインの式は
で表される。ここで テンプレート:Math は物質ごとに異なる基準振動数、テンプレート:Mathはプランク定数、テンプレート:Math はボルツマン定数、テンプレート:Math は気体定数である。
テンプレート:Math は温度 テンプレート:Math および物質の種類の関数であるが、それらが違っていても無次元量 テンプレート:Math の値が同じであれば同じ テンプレート:Math の値となる[1]。
脚注
関連項目
- ↑ 1.0 1.1 テンプレート:Cite
- ↑ テンプレート:Cite book
- ↑ テンプレート:Cite book page 141
- ↑ A Four-Parameter Corresponding States Correlation for Fluid Compressibility Factors テンプレート:Webarchive by Walter M. Kalback and Kenneth E. Starling, Chemical Engineering Department, University of Oklahoma.
- ↑ 5.0 5.1 テンプレート:Cite book
- ↑ 6.0 6.1 6.2 6.3 6.4 テンプレート:Cite journal