プランク定数
テンプレート:特殊文字 テンプレート:物理定数 テンプレート:物理定数 プランク定数(プランクていすう、プランクじょうすう、テンプレート:Lang-en)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。
量子力学の創始者の一人であるマックス・プランクにちなんで命名された。
SIにおける単位はテンプレート:仮リンク(記号: J⋅s または J s)である。プランク定数は2019年5月に定義定数となり、正確にテンプレート:Valと定義された。
概要
光子の持つエネルギー(エネルギー量子)テンプレート:Mvar は振動数 テンプレート:Mvar に比例し、その比例定数がプランク定数と定義される[1]。
光のエネルギー テンプレート:Mvar は光子の持つエネルギーの倍数の値のみを取り得る。
プランク定数の値は
- 正確に
また、プランク定数 テンプレート:Mvar を 円周率 テンプレート:Mvar の2倍で割った量 テンプレート:Math もよく使われるため、「換算プランク定数」、または「ディラック定数」と呼ばれる[4]。
ディラック定数の値は
記号
プランク定数は、記号 テンプレート:Mvar で表される。この記号はプランクの輻射公式を説明する定数としてプランク自身の論文の中で導入されている。テンプレート:De(テンプレート:De=補助、テンプレート:De=大きさ、量)の頭文字に由来する。また専用の記号として ℎ (PLANCK CONSTANT, Unicode U+210E) も用意されている。
ディラック定数の記号は、 テンプレート:Mvar にストローク符号を付けた記号 ħ(H WITH STROKE, LATIN SMALL LETTER、Unicode U+0127、JIS X 0213 1-10-93)が使われる。量の記号にイタリック体を用いる約束に従って、専用の記号として ℏ (PLANCK CONSTANT OVER TWO PI, Unicode U+210F, JIS X 0213 1-3-61) も用意されている。また[[TeX|テンプレート:TeX]] には数式記号 (\hbar)が用意されている。テンプレート:Mvar は「エイチバー」または「クロストエイチ」と発音される。
| 記号 | Unicode | JIS X 0213 | 文字参照 | 名称 |
|---|
歴史
黒体放射

1896年にヴィルヘルム・ヴィーンが黒体放射におけるエネルギー分布に関するヴィーンの放射法則を提案した。この式はそれ以前の実験で得られていた高振動数領域では測定値をよく説明したが、新たに得られた低振動数の領域では合わなかった。1900年にプランクが低振動数領域でも測定値と一致するようにヴィーンの理論式を修正する形でプランクの法則を提案したテンプレート:Sfnpテンプレート:Sfnpテンプレート:Sfnp。プランクの理論式は、高振動数の領域ではヴィーンの理論式に移行する。レイリー卿は古典的なエネルギー等分配則から低振動数極限における近似式の形を提案し、1905年にジェームズ・ジーンズがその係数を正しく与えた。レイリー・ジーンズの法則と呼ばれるこの式は、プランクの理論式から導かれる低振動数極限の形と係数を含めて一致した。
プランクは彼の公式の理論的な説明を与える過程で、振動数 テンプレート:Mvar の光のエネルギーの受け渡しは大きさ テンプレート:Mvar を単位としてのみ起こり得る、という仮定をしたテンプレート:Efn2[注 1]。この テンプレート:Mvar が後にプランク定数と呼ばれるようになった普遍定数である[7]。実験結果と彼の理論式を比較してプランクは、
と定めたテンプレート:Sfnp。
光電効果
アルベルト・アインシュタインはプランクの理論の影響を受け、1905年、光が粒子のような性質を持つという光量子仮説を提唱し光電効果を説明した。光量子仮説では、プランクとは別の方法でエネルギー量子の存在を説明したテンプレート:Sfnp。アインシュタインの光電効果の考えはともかくとして彼が導いた式の正しさは、ロバート・ミリカンによって10年かけて行われた実験にて確かめられた。1916年にミリカンが報告したプランク定数の値は、
であり、プランクが黒体放射から得た値とよく一致したテンプレート:Sfnp。
理論
プランク定数は量子論的な不確定性関係と関わる定数であり、テンプレート:Math の極限で量子力学が古典力学に一致するなど、量子論を特徴付ける定数である。
軌道角運動量やスピンは常に換算プランク定数の整数倍か半整数倍になっている。例えば、電子のスピンは テンプレート:Math である。なお、量子力学の分野では テンプレート:Math とするプランク単位系や原子単位系を用いる場合が多く、その場合の電子のスピンは テンプレート:Math となる。
プランク定数は位置と運動量の積の次元を持ち、不確定性関係から位相空間での面積の最小単位であるとも考えられているが、最近では テンプレート:Enlink らの研究で、量子カオス系においてはプランク定数以下のミクロ構造が現れる事がわかったテンプレート:Sfnp。
キログラムの定義
テンプレート:See also 質量のSI単位であるキログラムは、従来の定義では国際キログラム原器(IPK)が用いられていたが、プランク定数を用いた新しい定義に改定され、2019年5月に発効した。 新しい定義においてプランク定数はSIを定義する定義定数として位置付けられ、SI単位による値は実験的に決定される測定値ではなく、固定された定義値となった。 プランク定数(テンプレート:Math)とともに値が固定された定数である光速度 テンプレート:Mvar、及びセシウム133の超微細遷移周波数 テンプレート:Math とを組み合わせることで、キログラムが導かれるという仕組みになっている。
経緯
国際度量衡委員会の下部組織である質量関連量諮問委員会による2013年の勧告では、新たな質量の定義を採用する条件として、
- 相対標準不確かさが 50テンプレート:E- 以下のプランク定数が少なくとも3つ、独立した実験(キブル天秤法とX線結晶密度法[8]を含む)により得られていること、
- その内の少なくとも1つは、相対標準不確かさが 20テンプレート:E- 以下であること、
等が要求されていたが、2017年5月の 16th CCM meeting 時点までにこの条件は達成された[9]。
NISTの D. Haddad らは、2015年から2017年にかけて NIST-4 キブル天秤による計測を繰り返した結果として テンプレート:Val の値を得ており、相対標準不確かさでは 13テンプレート:E- を達成している[10][11]。その他の実験結果については「モルプランク定数#実験値から定義値へ」を参照のこと。
2018年11月の第26回国際度量衡総会 (CGPM) で決議され、2019年5月20日に施行された新しいSIの定義では、プランク定数は定義定数となった[12]。
脚注
注釈
出典
参考文献
原論文
- テンプレート:Cite journal
- テンプレート:Cite journal
- テンプレート:Cite journal
- テンプレート:Cite journal
- テンプレート:Cite journal
- テンプレート:Cite journal
- テンプレート:Cite journal
書籍
- 洋書
- 和書
外部リンク
- BIPM
- CODATA Value
- テンプレート:Cite web
- ↑ 1921年 ノーベル物理学賞(アインシュタイン)
- ↑ CODATA Value
- ↑ CODATA Value
- ↑ The American Heritage® Science Dictionary
- ↑ CODATA Value
- ↑ CODATA Value
- ↑ テンプレート:Cite book
- ↑ テンプレート:Cite journal
- ↑ テンプレート:Cite web
- ↑ テンプレート:Cite web
- ↑ テンプレート:Cite journal
- ↑ A concise summary of the International System of Units, SIBIPM,2019-05-20
引用エラー: 「注」という名前のグループの <ref> タグがありますが、対応する <references group="注"/> タグが見つかりません