絶対ガロア群

体 K の絶対ガロア群 GK(ぜったいガロアぐん、テンプレート:Lang-en-short)とは、K の分離閉包 Ksep の K 上のガロア群のことである。これは、K の代数的閉包の自己同型のうちで K を固定するもの全てから成る群と一致する。絶対ガロア群は副有限群であり、内部自己同型による違いを除いて well-defined である。
K が完全体であれば Ksep は K の代数的閉包 Kalg と等しい。K が標数0の場合や、K が有限体の場合がこれにあたる。
例
- 代数的閉体の絶対ガロア群は単位元のみからなる自明な群である。
- 有限体 K の絶対ガロア群は次の群
- と同型である(記号については射影極限参照)。フロベニウス自己同型 Fr は GK の標準的な位相的生成元である。Fr は、q を K の元の数とすると、Fr(x) = xq (x は Kalg の元)で定義される写像である。
- 複素数体上の有理関数体の絶対ガロア群は自由副有限群である。これはテンプレート:仮リンクに起源を持つ定理で、テンプレート:仮リンクにより証明された[1]。
- より一般に、任意の代数的閉体 C に対して、有理関数体 K = C(x) の絶対ガロア群は自由でその階数は C の濃度に等しいことが知られている。これはテンプレート:訳語疑問点範囲とフロリアン・ポップにより証明され、のちにテンプレート:訳語疑問点範囲とテンプレート:訳語疑問点範囲により代数的な方法で別証明が与えられた[2][3][4]。
- K を p 進数体 Qp の有限次拡大とする。p ≠ 2 であれば、この体の絶対ガロア群は [K:Qp] + 3 個の元で生成され、またその生成元と関係式も完全に知られている。これはテンプレート:仮リンクとテンプレート:訳語疑問点範囲による結果である[5][6]。p = 2 の場合にもいくつかの結果があるが、Q2 に対してはその構造は知られていない[7]。
未解決問題
- 有理数体の絶対ガロア群を直接的に記述する方法が知られていない。有理数体の絶対ガロア群の元で他の元と区別できるよう名前が付けられているのは単位元と複素共役だけである[9]。ベールイの定理によりこの絶対ガロア群はグロタンディークの子供のデッサン(曲面上の地図)に忠実に作用するので、代数体のガロア理論を"見る"ことはできる。
その他の結果
- 全ての副有限群はあるガロア拡大のガロア群となる[11]が、全ての副有限群が絶対ガロア群となるわけではない。例えば、有限群で絶対ガロア群となるものは単位元のみの自明な群か位数2の群だけであることがアルティン・シュライアーの定理から分かる。
- 全てのテンプレート:訳語疑問点範囲はテンプレート:訳語疑問点範囲の絶対ガロア群として実現できる。このことはテンプレート:訳語疑問点範囲とテンプレート:訳語疑問点範囲によって証明された[12]。
脚注
参考文献
- テンプレート:Citation
- テンプレート:Citation
- テンプレート:Citation
- テンプレート:Citation
- テンプレート:Citation
- テンプレート:Neukirch et al. CNF
- テンプレート:Citation
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Harvnb
- ↑ テンプレート:Cite web
- ↑ テンプレート:Cite conference
- ↑ テンプレート:Harvnb, p. 449.
- ↑ Fried & Jarden (2008) p.12
- ↑ Fried & Jarden (2008) pp.208,545