線型方程式系
テンプレート:出典の明記 数学において線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。
複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式などとも呼ぶこともある。
初等的説明
以下の式は、2 変数の線型方程式系の例である。
左側の記号(中括弧)は、特に必要というわけではないが、方程式系であることを明示するためによく用いられる。 この式において、2 つの線型方程式を同時に満たす (テンプレート:Mvar, テンプレート:Mvar) = (1, 2) が解である。
与えられた線型方程式系に属するすべての方程式を同時に満たすような変数の値のことを線型方程式系の解といい、線型方程式系の解を求めることを線型方程式系を解くという。
線型方程式系が与えられたとき、変数の数と方程式の本数を比べれば、その解は大まかに言って
- 変数の数の方が多いならば、(変数の数) − (方程式の本数)の分だけ変数を自由に定めることができ、解が一つに定まらない。
- 変数の数と方程式の本数が一致するならば、解が存在し、一つに定まる。
- 方程式の本数の方が多いならば、制約が過剰なので、解が存在しない。
のようになっていると考えることができる。また、変数の数が多いときには、いくつかの変数を勝手な値をとることができる定数と思ってやることで、変数の数と方程式の本数が同じであると考えることができる。したがって、普段は方程式の数と変数の数が一致する方程式系を考えることが多い。
解法でよく知られたものとして以下の方法がある。いずれの方法も変数を減らしていき、一変数の方程式に帰着させることによって解く方法である。
- 代入法
- いずれかの方程式を一つの変数について解き、他の方程式に代入することによって、変数を減らし、方程式を簡単にしてから解く方法。
- 等値法(等置法)
- それぞれの方程式を、特定の変数について解いたときの値を等しいとして、変数を消去する方法。代入法の一種とも言える。
- 加減法
- 方程式の両辺を定数倍したり、足し引きすることによって、変数を消去する方法。
行列と線型方程式系
テンプレート:Mvar 変数 テンプレート:Mvar 本の線型方程式系は一般に テンプレート:Mvar 個の係数 テンプレート:Mvarテンプレート:Mvar,テンプレート:Mvar (テンプレート:Mvar = 1, 2, ..., テンプレート:Mvar, テンプレート:Mvar = 1, 2, ..., テンプレート:Mvar) および テンプレート:Mvar 個の定数 テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar を用いて
の形に表される。これを、記法を改めて
と表示したり、あるいはさらに行列やベクトルを用いて、テンプレート:Mvar = [テンプレート:Mvarテンプレート:Mvar], テンプレート:Mvar = [テンプレート:Mvarテンプレート:Mvar], テンプレート:Mvar = [テンプレート:Mvarテンプレート:Mvar] などと置いてやれば
と記述することができる(歴史的には、このような表記法を考えることで行列の概念が作り出されたのである)。ここで テンプレート:Mvar をこの方程式系の係数行列、テンプレート:Mvar を変数ベクトルという。また特に テンプレート:Mvar が零ベクトル 0(すべての成分が 0)である場合に、この線型方程式は斉次(あるいは同次、homogeneous)であるといい、そうでないとき非斉次(あるいは非同次、inhomogeneous)であるという。非斉次の方程式 テンプレート:Mvarテンプレート:Mvar = テンプレート:Mvar が与えられたとき、テンプレート:Mvar = 0 と置いて得られる斉次方程式 テンプレート:Mvarテンプレート:Mvar = 0 はもとの非斉次方程式に随伴する斉次方程式であるという(随伴という代わりに、同伴する、付随する、対応する、伴うなどともいう)。
線型方程式系の解空間
テンプレート:Mvar と テンプレート:Mvar を有限次元ベクトル空間とし、変数ベクトル テンプレート:Mvar は テンプレート:Mvar の中を動くものとし、テンプレート:Mvar の元 テンプレート:Mvar と係数行列 テンプレート:Mvar によって定まる線型方程式系
を考える。また、行列 テンプレート:Mvar の定める線型写像を テンプレート:Mvarテンプレート:Mvar: テンプレート:Mvar → テンプレート:Mvar と記すことにすると、この線型方程式系を解くという問題は、一点集合 {テンプレート:Mvar} の テンプレート:Mvarテンプレート:Mvar による逆像 テンプレート:Mvarテンプレート:Mvar−1(テンプレート:Mvar) の状態(ここで テンプレート:Mvarテンプレート:Mvar−1 は一般には写像にはならず、逆対応の意味である)を記述する問題であると捉えることができる。
- 本項目は線型方程式の有限系を考察対象とするため、テンプレート:Mvar と テンプレート:Mvar は有限次元であると仮定するが、基本的に以下の議論はベクトル空間 テンプレート:Mvar と テンプレート:Mvar が無限次元であってもほとんどの場合は、適当な読み替えのもとに成立する。一般の場合は線型方程式の項を参照されたい。
方程式系が斉次形 (テンプレート:Mvar = 0) ならば、この方程式は常に零ベクトル テンプレート:Mvar = 0 を解に持つ。これを斉次方程式の自明な解とよぶ。また斉次形ならば方程式の解の重ね合わせが可能である。つまり、 テンプレート:Mvar と テンプレート:Mvar が斉次線型方程式系の解であるとき、任意のスカラー α と β に対して、 αテンプレート:Mvar + βテンプレート:Mvar も同じ方程式系の解となる。したがって斉次方程式系の解全体の集合 テンプレート:Mvarテンプレート:Mvar−1(0) は テンプレート:Mvar の線型部分空間をなし、方程式系の解ベクトル空間あるいは省略して解空間と呼ばれる。斉次方程式の解空間 テンプレート:Mvarテンプレート:Mvar−1(0) は テンプレート:Mvarテンプレート:Mvar の(あるいは テンプレート:Mvar の)核と呼ばれるもので、斉次方程式系の解空間が部分空間をなすという事実は核
が テンプレート:Mvar の部分空間を成すということに同じである。特に、解空間の次元は テンプレート:Mvarテンプレート:Mvar の退化次数 nul テンプレート:Mvarテンプレート:Mvar に等しい。このことはさらに、テンプレート:Mvar = nul テンプレート:Mvarテンプレート:Mvar とおくと、方程式の一般解が テンプレート:Mvar 個の一次独立な解(基本解) テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar と テンプレート:Mvar 個の任意定数(パラメータ)テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar によって
の形に表されると言い換えることができる。
方程式系が非斉次 (テンプレート:Mvar ≠ 0) であるとき、テンプレート:Mvar が線型写像 テンプレート:Mvarテンプレート:Mvar の像に含まれていなければ方程式系の解は存在せず、テンプレート:Mvar が テンプレート:Mvar の像に属すならば少なくとも一つの解が存在する。さらに線型写像 テンプレート:Mvarテンプレート:Mvar が全射ならば、任意の テンプレート:Mvar ∈ テンプレート:Mvar に対して方程式系は解を持つ。列ベクトル テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar によって テンプレート:Mvar = (テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar) と表すと、テンプレート:Mvar が線型写像 テンプレート:Mvarテンプレート:Mvar の像に含まれるということは、テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar の線型結合として テンプレート:Mvar が表されるということであり、またこれは階数を用いれば、行列 テンプレート:Mvar と行列 テンプレート:Mvar = (テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar, テンプレート:Mvar) の間に等式 テンプレート:Mvar テンプレート:Mvar = テンプレート:Mvar テンプレート:Mvar が成立することと述べることもできる。
非斉次の線型方程式系が2つの解 テンプレート:Mvar と テンプレート:Mvar を持つとき、差 テンプレート:Mvar − テンプレート:Mvar は 写像 テンプレート:Mvarテンプレート:Mvar の線型性によって テンプレート:Mvar(テンプレート:Mvar − テンプレート:Mvar) = 0 をみたす。したがって、非斉次の線型方程式系の二つの解は随伴する斉次方程式系の解を加える分の違いしか持たない。ゆえに非斉次方程式系の解の一つ(特殊解)と随伴斉次方程式系の一般解により、非斉次方程式のすべての解を記述することができる。つまり、 テンプレート:Mvar0 が テンプレート:Mvarテンプレート:Mvar = テンプレート:Mvar の特殊解であるならば、非斉次方程式の解の全体は
で与えられる。これは ker テンプレート:Mvar に随伴したアファイン空間であり、やはり方程式系の解空間と呼ばれる。随伴斉次方程式の基本解 テンプレート:Mvar1, テンプレート:Mvar2, ..., テンプレート:Mvarテンプレート:Mvar を用いれば
の形にすべての解を書くことができる。
線型方程式 テンプレート:Mvarテンプレート:Mvar = テンプレート:Mvar の解が一意であることは、線型写像 テンプレート:Mvarテンプレート:Mvar が単射であることを意味し、これは ker テンプレート:Mvar = {0} であることと同値である。する。またこれは、階数と退化次数の関係から、テンプレート:Mvarテンプレート:Mvar が非退化 (full rank) であるとも言い換えられる。またこのとき、さらに テンプレート:Mvar, テンプレート:Mvar の次元が同じならば、行列式 |テンプレート:Mvar| は零でない。
解法
方程式の数と変数の数が一致する場合において、テンプレート:Mvar が正則行列ならば、テンプレート:Mvar の逆行列と呼ばれる行列 テンプレート:Mvar−1 を用いて、この線型方程式系の解を
と求めることが(論理的には)可能である。しかし、逆行列を計算することは一般に困難であり、数値計算的には別の解法が各種提案されている。 以下の 2 つは、線型代数学に重要な解法である。
実用上に出てくる問題は、問題の規模(方程式の本数や変数の数)が小さく、係数行列 テンプレート:Mvar が密なものか、問題の規模は大きいものの、行列 テンプレート:Mvar は疎でなおかつ性質があるものが多い(疎行列)。また行列 テンプレート:Mvar は変わらず、定数ベクトル テンプレート:Mvar をいくつも変えて計算する必要も生じる。従って、それぞれの状況に適した解法を選ぶ必要がある。
具体例
テンプレート:Mvar が2次正方行列のとき
の解は次のようになる。
のとき
である。 のとき、のときは、方程式が
と書けて、のとき解なし。のとき
となる。 のときは、方程式は
であり、 のとき、のとき解なし。のとき
となる。 のとき、のとき解なし。 のとき
となる。
応用
線型方程式系は、数学において伝統的な問題である。またさまざまな応用がある。