代数拡大
抽象代数学において、体の拡大 テンプレート:Math は次を満たすときに代数的(テンプレート:Lang-en-short)であると言う。テンプレート:Mvar のすべての元は テンプレート:Mvar 上代数的である、すなわち、テンプレート:Mvar のすべての元は テンプレート:Mvar 係数のある テンプレート:Math でない多項式の根である。代数的でない体の拡大、すなわち超越元を含む場合は、超越的 (transcendental) と言う。
例えば、体の拡大 テンプレート:Math, すなわち有理数体の拡大としての実数体は、超越的であるのに対し、体の拡大 テンプレート:Math や テンプレート:Math は代数的である。ここで テンプレート:Math は複素数体である。
すべての超越拡大は無限次元の拡大である。言い換えるとすべての有限次拡大は代数的ということになる[1]。しかしながら逆は正しくない。無限次代数拡大が存在する。例えば、代数的数体は有理数体の無限次代数拡大である。
テンプレート:Mvar が テンプレート:Mvar 上代数的であれば、テンプレート:Mvar 係数の テンプレート:Mvar による多項式全体の集合 テンプレート:Math は環であるだけでなく体である:テンプレート:Mvar 上有限次の テンプレート:Mvar の代数拡大である。逆もまた正しく、テンプレート:Math が体ならば テンプレート:Mvar は テンプレート:Mvar 上代数的である。特別な場合として、テンプレート:Math が有理数体のときは、テンプレート:Math は代数体の例である。
非自明な代数拡大をもたない体は代数的閉体と呼ばれる。例は複素数体である。すべての体は代数的閉であるような代数拡大をもつ(これは代数的閉包と呼ばれる)が、これを一般に証明するには選択公理が必要である。
拡大 テンプレート:Math が代数的であることと テンプレート:Mvar のすべての部分 テンプレート:Mvar-代数が体であることは同値である。
性質
代数拡大のクラスはテンプレート:仮リンク をなす。すなわち、以下の3つの性質が成り立つ[2]。
- テンプレート:Mvar が テンプレート:Mvar の代数拡大であり テンプレート:Mvar が テンプレート:Mvar の代数拡大であれば、テンプレート:Mvar は テンプレート:Mvar の代数拡大である。
- テンプレート:Mvar と テンプレート:Mvar が共通の overfield テンプレート:Mvar において テンプレート:Mvar の代数拡大であれば、合成体 (compositum) テンプレート:Mvar は テンプレート:Mvar の代数拡大である。
- テンプレート:Mvar が テンプレート:Mvar の代数拡大で テンプレート:Math であれば、テンプレート:Mvar は テンプレート:Mvar の代数拡大である。
これらの有限項の結果は超限帰納法を用いて一般化できる:
この事実と(半順序集合を適切に取って)ツォルンの補題を合わせれば代数拡大の存在がいえる。
一般化
テンプレート:Main モデル理論は代数拡大の概念を任意の理論に一般化する。M の N への埋め込みは、N のすべての元 x に対して、M にパラメータをとるある 論理式 p が存在して p(x) が真かつ集合
が有限であるようなときに、代数拡大と呼ばれる。この定義を体の理論に適用することで通常の代数拡大の定義が得られることがわかる。N の M 上のガロワ群は再び自己同型の群として定義することができ、ガロワ群の理論の多くの部分は一般の場合に発達させることができることがわかる。