群の直積

提供: testwiki
ナビゲーションに移動 検索に移動

数学、特に群論において、与えられたいくつかの直積(ちょくせき、テンプレート:Lang-en-short)は、それらを正規部分群として含むような新しい群を作る構成法である。

定義

2つの群の直積

GHが与えられたとき、その集合としての直積 G×H に、

(g,h)(g,h)=(gg,hh)forg,gG,h,hH

として演算を定義すると、 G×H は群になる。これを GH直積という。

有限個の群の直積

同様に、有限個の群 G1,G2,,Gn が与えられたとき、その直積集合の元

(g1,g2,,gn),(g'1,g'2,,g'n)i=1nGi

に対して

(g1,g2,,gn)(g'1,g'2,,g'n)=(g1g'1,g2g'2,,gng'n)

と定義すると、ΠiGi は群になり、これを G1,G2,,Gn直積と言う。

任意個の群の直積

一般に、群の族 {Gi}iI が与えられると、その直積集合の元 (gi)(gi) に対して、(gi)(gi)=(gigi)によって演算を定義したものが群 {Gi} の直積である。

テンプレート:Unordered list

性質

テンプレート:節スタブ

直積因子

GH の直積 G×H は、{(g,1H)gG}{(1G,h)hH}正規部分群として含む(ただし 1G, 1H はそれぞれの単位元)。これらはそれぞれ G, H同型である。

証明

gG, (g,h)G×H とすると,次の等式が成り立つ。(g,h)(g,1H)(g,h)1=(ggg1,1H)hH についても同様である。よって,主張が従う[1]

可換性

群の直積 G×H において群 G の任意の元と群 H との任意の元は可換である。

証明

gG, hH とすると,次が成り立つ。(g,h)=(g,1H)(1G,h)=(1G,h)(g,1H)したがって,主張が従う[2]

その他

  • G, H, K に対し、次の同型が成り立つ。(G×H)×KG×(H×K)G×H×K
  • 普遍性)群 Gi (iI) が与えられているとする。πj : ΠiI GiGj (jI) を自然な射影とする。このとき任意の群 H と任意の群準同型写像 fj : HGj (jI) に対して、一意的な準同型 φ : H → ΠiI Gi が存在して、fj = πj∘φ (jI) が成り立つ。つまり群の直積は群のなす直積である。

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

参考文献

テンプレート:参照方法

  • テンプレート:Cite book
  • 森田康夫『代数概論』、数学選書9(第12版)、裳華房、ISBN 978-4-7853-1311-1
  • Serge Lang, Algebra, GTM 211 (Rev. 3rd ed.), Springer, ISBN 978-0-387-95385-4

関連項目

テンプレート:Abstract-algebra-stub

  1. 雪江 2010, p.60
  2. 雪江 2010, p.60