ソディ線

提供: testwiki
ナビゲーションに移動 検索に移動
ソディ線s、 外(第一)ソディ点So、内(第二)ソディ点Si, ジェルゴンヌ点G、内心 I,内(第二)ソディ円si、外(第一)ソディ点so, フレッチャー点F、ド・ロンシャン点 L、オイラー線 e、ジェルゴンヌ線 g

ソディ線(そでぃせん、:Soddy line)とは、二つのソディ円の中心を結ぶ直線である。フレデリック・ソディが1936年にネイチャーで、ソディ円のような2円に接する円におけるデカルトの定理の特別な場合の証明として発表した。

性質

ソディ線は、オイラー線とはド・ロンシャン点で交わり、ジェルゴンヌ線とはフレッチャー点(Fletcher point)で交わる。また、ソディ線とジェルゴンヌ線は直交する。フレッチャー点の三線座標は以下の式で与えられる。

f(A,B,C):f(B,C,A):f(C,A,B)

ただし

f(A,B,C)=(sec2A2)(2cos2A2cos2B2cos2C2)

ソディ線、オイラー線、ジェルゴンヌ線から成る三角形はオイラー・ジェルゴンヌ・ソディ三角形(Euler-Gergonne-Soddy triangle)と言う[1]。特にオイラー線とジェルゴンヌ線の交点はエヴァンズ点(Evans point)と呼ばれ[2]、オイラー・ジェルゴンヌ・ソディ三角形はド・ロンシャン点、フレッチャー点、エヴァンズ点から成る[3]

ソディ線は以下の点を通る。

Central line

ソディ線はX(657)のCentral lineであり、三線座標テンプレート:Mathを用いて以下の式で表される。

γβ(a+b+c)a+αγ(ab+c)b+βα(a+bc)c=0

GEOS円

GEOS円(全体)
GEOS円

ソディ線とオイラー線の交点であるド・ロンシャン点、オイラー線と垂軸の交点であるX(468)、垂軸とジェルゴンヌ線の交点であるX(650)、ジェルゴンヌ線とソディ線の交点であるフレッチャー点は共円である[4]。この円をテンプレート:仮リンクと言う。名称は4線の頭文字をとったものである。GEOS円とオイラー・ジェルゴンヌ・ソディ三角形の外接円(オイラー・ジェルゴンヌ・ソディ円)の根軸はソディ線である。

垂軸とオイラー線は直交することから、GEOS円の中心X(8142)は、X(650)とド・ロンシャン点の中点にあたり、その三線座標はコンウェイの記法を用いて以下の式で与えられる[4][5]

a2SASBSCS2asa(ab)(ac):b2SBSCSAS2bsb(bc)(ba):c2SCSASBS2csc(ca)(cb)

ここでテンプレート:Mvarはそれぞれ半周長テンプレート:Mvarとしてテンプレート:Mvarである。これらのことから、ド・ロンシャン点、エヴァンズ点、X(650)、ソディ線と垂軸の交点X(3012)はテンプレート:仮リンクを成す。

脚注

テンプレート:Reflist

参考文献

  • Zuming Feng: Why Are the Gergonne and Soddy Lines Perpendicular? A Synthetic Approach. In: Mathematics Magazin, Band 81, Nr. 3, Juni 2008, S. 211-214 (JSTOR)
  • テンプレート:仮リンク: The Gergonne and Soddy lines. In: Elemente der Mathematik,. Band 70, Nr. 1, 2015, S. 1-6 (online)

外部リンク

テンプレート:Commonscat