ワイル方程式

提供: testwiki
ナビゲーションに移動 検索に移動

場の量子論における、ワイル(ヴァイル)方程式テンプレート:Llang)は質量のないフェルミオンを表す波動方程式である。ヘルマン・ワイルの名を冠している。

定義

ワイル方程式は次のとおりである[1] [2]

σμμψ=0

これは明らかに国際単位系に従う:

I21cψt+σxψx+σyψy+σzψz=0

ここで、

σμ=(σ0,σ1,σ2,σ3)=(I2,σx,σy,σz)

は、成分がμ = 0に対し2×2単位行列でμ = 1,2,3に対しパウリ行列である4次元ベクトルであって、ψはワイル表示スピノール波動関数である。

要素 ψLと ψRは、相対的にそれぞれに対し右向きと左向きとして扱われるパウリ行列である。二つの要素が持つ形式は

ψ=(ψ1ψ2)=χei(𝐤𝐫ωt)=χei(𝐩𝐫Et)/であり

この時

χ=(χ1χ2)

は連続的な2成分スピノールである。

粒子が質量がないので、運動量の大きさは直接波数ベクトルに関連付けられる(これはドブロイ関係によって可能となる。)。

|𝐩|=|𝐤|=ω/c|𝐤|=ω/c

この方程式は右手或いは左手スピノールの観点から次のように書ける。

σμμψR=0σ¯μμψL=0

ヘリシティ

カイラル成分は粒子のヘリシティλに一致する( J角運動量で直線的運動量P上にある)。

𝐩𝐉|𝐩,λ=λ|𝐩||𝐩,λ

ここでλ=±1/2である。

誘導

これは、ミンコフスキー時空間における対称性につながる。

参考文献

テンプレート:Reflist

関連項目

  1. Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, テンプレート:ISBN2
  2. The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, テンプレート:ISBN2.